ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-01-30
    Description: Observations from the global ocean have long confirmed the ubiquity of thermohaline inversions in the upper ocean, often accompanied by a clear signal in biogeochemical properties. Their emergence has been linked to different processes such as double diffusion, mesoscale stirring, frontal subduction, and the recently discussed submesoscale features. This study uses the central Baltic Sea as a natural laboratory to explore the formation of salinity inversions in the thermocline region during summer. We use realistic high‐resolution simulations complemented by field observations to identify the dominant generation mechanism and potential hotspots of their emergence. We propose that the strongly stratified thermocline can host distinct salinity minima during summer conditions resulting primarily from the interaction between lateral surface salinity gradients and wind‐induced differential advection. Since this is a generic mechanism, such salinity inversions can likely constitute a typical feature of the upper ocean in regions with distinct thermoclines and shallow mixed layers.
    Description: Plain Language Summary: The upper ocean is characterized by a well‐mixed surface layer, below which temperature decreases rapidly with depth, forming the so‐called thermocline region. A corresponding salinity increase with depth is typically anticipated for stable density stratification to occur. Temperature and salinity inversions can, however, emerge in the upper ocean. Such thermohaline inversions have been observed in different regions of the world's oceans, and various mechanisms have been proposed to explain their generation. Here, the central basin of the Baltic Sea is used as a natural laboratory to explore the formation of distinct salinity minima in the thermocline region during summer conditions. Using high‐resolution numerical simulations and measurements from a field campaign, we show that inversions are abundant and can emerge throughout the entire basin. They increase with increasing wind speeds and concentrate mainly in regions with strong lateral salinity differences. We propose that thermocline salinity minima can occur during summer when the wind transports saltier water over less saline surface waters. This is a generic mechanism that can therefore be responsible for the formation of the salinity inversions observed worldwide in areas with distinct thermoclines and shallow mixed layers.
    Description: Key Points: Observations collected in the central Baltic Sea during summer indicate patches of distinct salinity minima in the thermocline region. Realistic high‐resolution simulations are used to explore the origin of the salinity minima and to identify the hotspots of their genesis. Lateral surface salinity gradients interacting with wind‐induced differential advection are shown to generate most of the inversions.
    Description: German Research Foundation
    Description: http://doi.io-warnemuende.de/10.12754/data-2022-0001
    Keywords: ddc:551.46 ; salinity inversions ; thermohaline intrusions ; subduction ; submesoscales ; differential advection ; Baltic Sea
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1375-1384, doi:10.1175/JPO-D-17-0266.1.
    Description: The relationship between net mixing and the estuarine exchange flow may be quantified using a salinity variance budget. Here “mixing” is defined as the rate of destruction of volume-integrated salinity variance, and the exchange flow is quantified using the total exchange flow. These concepts are explored using an idealized 3D model estuary. It is shown that in steady state (e.g., averaging over the spring–neap cycle) the volume-integrated mixing is approximately given by Mixing ≅ SinSoutQr, where Sin and Sout are the representative salinities of in- and outflowing layers at the mouth and Qr is the river volume flux. This relationship provides an extension of the familiar Knudsen relation, in which the exchange flow is diagnosed based on knowledge of these same three quantities, quantitatively linking mixing to the exchange flow.
    Description: The work was supported by the National Science Foundation through Grants OCE-1736242 to PM and OCE-1736539 to WRG and by the German Research Foundation through Grants TRR 181 and GRK 2000 to HB.
    Keywords: Coastal flows ; Diapycnal mixing ; Ocean dynamics ; Streamflow ; Diagnostics ; Isopycnal coordinates
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...