ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Balsam poplar  (2)
  • Nutrient deficiency  (2)
Collection
Keywords
Publisher
Years
  • 1
    ISSN: 1432-1939
    Keywords: Defoliation ; Compensatory growth ; Serengeti ; Phosphate uptake ; Nutrient deficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Two shortgrass species (Sporobolus ioclados and Eustachys paspaloides) and two midgrass species (E. paspaloides and Pennisetum mezianum) from the Serengeti grasslands of Tanzania were grown under conditions of extreme phosphorus (P) deficiency. Production of each of these species is maintained or enhanced by defoliation under adequate nutrient supply (McNaughton et al. 1983). However, under the P-deficient conditions of our experiment, defoliation caused a reduction in biomass of all plant parts of each species. Green leaf biomass was reduced most strongly by defoliation, and crowns were least affected. Yield of biomass and nutrients to grazers (green leaves+clipped material) was enhanced by weekly defoliation in the shortgrass grazing-adapted species, whereas yield to producers (live biomass and nutrients retained by the plant) and yield to decomposers (litter) were strongly reduced by defoliation in all species. Phosphate absorption capacity (V max) measured on excised roots was enhanced by defoliation in the grazing-adapted Sporobolus, but, due to low affinity (high K m) of roots of defoliated plants for phosphate, absorption rate was not greatly altered at low solution concentrations. Phosphate absorption capacity was reduced or unaffected by defoliation in other species. We conclude that under conditions of P deficiency, plants are unable to acquire the nutrients necessary to replenish large nutrient losses to grazers. In low-nutrient environments, compensatory growth (stimulation of production by grazing) is not a viable strategy. Therefore, in these environments plants respond evolutionarily to herbivores by developing chemical or morphological defenses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Carbon/nutrient balance hypothesis ; Plant defense ; Snowshoe hare ; Balsam poplar
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The carbon/nutrient balance hypothesis fails to correctly predict effects of fertilization and shading on concentrations of defensive metabolites in Alaskan balsam poplar (Populus balsamifera). Of six metabolites analyzed, only one responded in the predicted fashion to fertilization and one to shading. These results and those of other similar studies suggest that while the carbon/nutrient balance hypothesis may correctly predict the effects of fertilization and shading on the concentrations of metabolic “end products”, it fails for many metabolites because of the dynamics associated with their production and turnover. In metabolites that turn over, static concentration is a poor predictor of defensive investment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical ecology 16 (1990), S. 1941-1959 
    ISSN: 1573-1561
    Keywords: Balsam poplar ; Populus balsamifera ; snowshoe hare ; Lepus americanus ; plant chemical defense ; herbivore ; cineol ; benzyl alcohol ; bisabolol ; 6-hydroxycyclohexenone ; salicaldehyde
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Palatabilities of parts and growth stages of balsam poplar (Populus balsamifera) to snowshoe hares (Lepus americanus) are related to concentrations of specific plant metabolites that act as antifeedants. Buds are defended from hares by cineol, benzyl alcohol, and (+)-α-bisabolol. Internodes are defended by 6-hydroxycylohexenone (6-HCH) and salicaldehyde. Although defense of interaodes depends upon both compounds, the defense of juvenile internodes is principally related to salicaldehyde concentration; the defense of internode current annual growth is principally related to 6-HCH concentration. The concentration of 6-HCH can be supplemented by the hydrolysis of phenol glycosides when plant tissue is disrupted, raising the possibility of a dynamic element of the chemical defense of poplar.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 72 (1983), S. 283-287 
    ISSN: 1573-5036
    Keywords: Barley ; Chinochloa ; Growth rate ; Nutrient deficiency ; Nutrient stress ; Phosphorus fractions ; Root-shoot ratio ; Taiga
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract High-nutrient-adapted and low-nutrient-adapted species of New Zealand tussock grasses (Chionochloa), barley (Hordeum), and several taiga trees were grown at three rates of phosphorus supply. Low-nutrient-adapted species in each group of species had similar (grasses) or lower (trees) capacities for phosphate absorption, were less efficient in producing biomass (i.e. had higher nutrient concentrations), and grew more slowly than high-nutrient-adapted species. I conclude that the major adaptation to low nutrient availability in each of these comparisons is a slow growth rate that reduces the annual nutrient requirement.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...