ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Sulfide oxidation  (2)
  • Bacteriochlorophyll c  (1)
  • Electron transport  (1)
  • 1
    ISSN: 1432-072X
    Keywords: Key words Chromatium vinosum ; Phototrophic ; sulfur bacteria ; Sulfur globules ; Extracytoplasmic ; localization ; Sulfide oxidation ; Sulfur deposition ; Thiocapsa roseoperscina ; Interposon mutagenesis ; phoA fusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Purple sulfur bacteria store sulfur as intracellular globules enclosed by a protein envelope. We cloned the genes sgpA, sgpB, and sgpC, which encode the three different proteins that constitute the sulfur globule envelope of Chromatium vinosum D (DSMZ 180T). Southern hybridization analyses and nucleotide sequencing showed that these three genes are not clustered in the same operon. All three genes are preceded by sequences resembling σ70-dependent promoters, and hairpin structures typical for rho-independent terminators are found immediately downstream of the translational stop codons of sgpA, sgpB, and sgpC. Insertional inactivation of sgpA in Chr. vinosum showed that the presence of only one of the homologous proteins SgpA and SgpB suffices for formation of intact sulfur globules. All three sgp genes encode translation products which – when compared to the isolated proteins – carry amino-terminal extensions. These extensions meet all requirements for typical signal peptides indicating an extracytoplasmic localization of the sulfur globule proteins. A fusion of the phoA gene to the sequence encoding the proposed signal peptide of sgpA led to high specific alkaline phosphatase activities in Escherichia coli, further supporting the envisaged targeting process. Together with electron microscopic evidence these results provide strong indication for an extracytoplasmic localization of the sulfur globules in Chr. vinosum and probably in other Chromatiaceae. Extracytoplasmic formation of stored sulfur could contribute to the transmembranous Δp that drives ATP synthesis and reverse electron flow in Chr. vinosum.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 145 (1986), S. 295-301 
    ISSN: 1432-072X
    Keywords: Chromatophores ; Electron transport ; NAD photoreduction ; Photosynthesis ; Phototrophic bacteria ; Rhodobacter sulfidophilus ; Sulfide oxidation ; Ubiquinone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Chromatophores isolated from the marine phototrophic bacterium Rhodobacter sulfidophilus were found to photoreduce NAD with sulfide as the electron donor. The apparent K m for sulfide was 370 μM and the optimal pH was 7.0. The rate of NAD photoreduction in chromatophore suspensions with sulfide as the electron donor (about 7–12 μM/h·μmol Bchl) was approximately onetenth the rate of sulfide oxidation in whole cell suspensions. NAD photoreduction was inhibited by rotenone, carbonyl cyanide-m-chlorophenylhydrazone, and antimycin A. Sulfide reduced ubiquinone in the dark when added to anaerobic chromatophore suspensions. These results suggest that electron transport from sulfide to NAD involves an initial dark reduction of ubiquinone followed by reverse electron transport from ubiquinol to NAD mediated by NADH dehydrogenase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 24 (1990), S. 253-263 
    ISSN: 1573-5079
    Keywords: Bacteriochlorophyll c ; Chlorobium limicola f. thiosulfatophilum ; Chloroflexus aurantiacus ; Chlorosomes ; Circular dichroism ; Photosynthetic antennas
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Positive and negative bands in previously measured circular dichroism (CD) spectra of Chlorobium limicola chlorosomes appeared to be sign-reversed relative to those of Chloroflexus aurantiacus chlorosomes in the 740–750 nm spectral region where bacteriochlorophyll (BChl) c absorbs maximally. It was not clear, however, whether this difference was intrinsic to the chlorosomes or was due to differences in the procedures used to prepare them. We therefore repeated the CD measurements using chlorosomes isolated from both Cb. limicola f. thiosulfatophilum and Cf. aurantiacus using the method of Gerola and Olson (1986, Biochim. Biophys. Acta 848: 69–76). Contrary to the earlier results, both types of chlorosomes had very similar CD spectra, suggesting that both have similar arrangements of BChl c molecules. The previously reported difference between the CD spectra of Chlorobium and Chloroflexus chlorosomes is due to the instability of Chlorobium chlorosomes, which can undergo a hypsochromic shift in their near infrared absorption maximum accompanied by an apparent inversion in their near infrared CD spectrum during isolation. Treating isolated chlorosomes with the strong ionic detergent sodium dodecylsulfate, which removes BChl a, does not alter the arrangement of BChl c molecules in either Chloroflexus or Chlorobium chlorosomes, as indicated by the lack of an effect on their CD spectra.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...