ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-3297
    Keywords: Quantitative trait loci (QTL) ; BXD ; recombinant inbred strains ; C57BL/6 ; DBA/2 ; nitrous oxide ; ethanol ; withdrawal syndromes ; chromosome mapping ; drug abuse ; mouse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Psychology
    Notes: Abstract Recombinant inbred (RI) mouse strains were developed primarily as a tool to detect and provisionally map major gene loci—those with effects large enough to cause a bimodal distribution in the trait of interest. This implied that progress toward gene mapping was possible only for gene loci accounting for at least half of the genetic variance. More recently, QTL (quantitative trait loci) approaches have been advanced that do not require bimodal distributions and are thus applicable to a much wider range of phenotypes. They offer the prospect of meaningful progress toward detecting and mapping minor as well as major gene loci affecting any trait of interest, provided there is a significant degree of genetic determination among the RI strains. This paper presents a review of RI gene mapping efforts concerning phenotypes related to drug abuse and presents new data for studies now in progress for nitrous oxide and acute ethanol withdrawal intensity. These two studies exemplify several strengths and limitations of the RI QTL approach.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-3297
    Keywords: QTL mapping ; recombinant inbred strains ; C57BL/6 ; DBA/2 ; BXD
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Psychology
    Notes: Abstract Effective mapping strategies for quantitative traits must allow for the detection of the more important quantitative trait loci (QTLs) while minimizing false positives. Type I (false-positive) and Type II (false-negative) error rates were estimated from a computer simulation of QTL mapping in the BXD recombinant inbred (RI) set comprising 26 strains of mice, and comparisons made with theoretical predictions. The results are generally applicable to other RI sets when corrections are made for differing strain numbers and marker densities. Regardless of the number or magnitude of simulated QTLs contributing to the trait variance, thep value necessary to provide genome-wide. 05 Type I error protection was found to be aboutp=.0001. To provide adequate protection against both Type I (α=.0001) and Type II (β=.2) errors, a QTL would have to account for more than half of the between-strain (genetic) variance if the BXD or similar set was used alone. In contrast, a two-step mapping strategy was also considered, where RI strains are used as a preliminary screen for QTLs to be specifically tested (confirmed) in an F2 (or other) population. In this case, QTLs accounting for ∼16% of the between-strain variance could be detected with an 80% probability in the BXD set when α=0.2. To balance the competing goals of minimizing Type I and II errors, an economical strategy is to adopt a more stringent α initially for the RI screen, since this requires only a limited genome search in the F2 of the RI-implicated regions (∼10% of the F2 genome whenp〈.01 in the RIs). If confirmed QTLs do not account in the aggregate for a sufficient proportion of the genetic variance, then a more relaxed α value can be used in the RI screen to increase the statistical power. This flexibility in setting RI α values is appropriate only when adequate protection against Type I errors comes from the F2 (or other) confirmation test(s).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...