ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 133 (1993), S. 29-41 
    ISSN: 1432-1424
    Keywords: inwardly and outwardly rectifying K+ currents ; BK channels ; TEA ; Ba2+ ; Cs+ ; sheep parotid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary We have used whole-cell patch-clamp techniques to examine the sensitivities of the inwardly and the outwardly rectifying K+ currents in sheep parotid cells to K+ channel blockers. Extracellular tetraethylammonium (ID50 ≈ 200 μmol/liter), quinine (ID50 ≈ 100 μmol/liter), verapamil (ID50 ≈ 30 μmol/liter) and charybdotoxin (ID50 〈 0.1 μmol/liter) reduced the outwardly rectifying current but had no effect on the inwardly rectifying current. Quinidine inhibited the outwardly rectifying current (ID50 ≈ 200 μmol/liter) and, at a concentration of 1 mmol/liter, reduced the inwardly rectifying current by 35%. Extracellular Ba2+ inhibited both the inwardly and outwardly rectifying K+ currents but the inwardly rectifying K+ current was more sensitive to it (ID50 ≈ 1 μmol/liter) than was the outwardly rectifying K+ current (ID50 ≈ 2 mmol/liter). Extracellular Cs+ reduced the inwardly rectifying K+ current (ID50 ≈ 100 μmol/liter) without affecting the outwardly rectifying current; 4-aminopyridine (1 or 10 mmol/liter), lidocaine (0.1 or 1 mmol/liter) and flecainide (0.01 or 0.1 mmol/liter) affected neither current. In excised outsideout patches, the addition to the bath of quinine (100 μmol/liter), quinidine (100 μmol/liter), verapamil (100 μmol/liter) or charybdotoxin (100 nmol/liter) inhibited Ca2+- and voltage-sensitive 250 pS K+ channels (BK channels), but 4-aminopyridine (1 mmol/ liter) and lidocaine (0.1 mmol/liter) did not. The pattern of blocker sensitivities is thus consistent with the hypothesis that BK channels are responsible for the outwardly rectifying whole-cell current seen in resting sheep parotid cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1424
    Keywords: K+ and Cl− currents ; Tetraethylammonium ; Verapamil ; Quinine ; 4-Aminopyridine ; BK channels
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract As in other salivary glands, the secretory cells of the sheep parotid have a resting K+ conductance that is dominated by BK channels, which are activated by acetylcholine (ACh) and are blocked by tetraethylammonium (TEA). Nevertheless, perfusion studies indicate that TEA does not inhibit ACh-evoked fluid secretion or K+ efflux from intact sheep parotid glands. In the present study, we have used whole-cell patch clamp techniques to show that ACh activates K+ and Cl− conductances in sheep parotid secretory cells by increasing intracellular free Ca2+, and we have compared the blocker sensitivity of the ACh-evoked whole-cell K+ current to the previously reported blocker sensitivity of the BK channels seen in these cells. The ACh-induced whole-cell K+ current was not blocked by TEA (10 mmol/l) or verapamil (100 μmol/l), both of which block the resting K+ conductance and inhibit BK channels in these cells. Quinine (1 mmol/l) and quinidine (1 mmol/l), although only weak blockers of the resting K+ conductance, inhibited the ACh-evoked current at 0 mV (K+ current), by 68% and 78%, respectively. 4-Aminopyridine (10 mmol/l) partially inhibited the ACh-induced K+ current and caused it to fluctuate. It also caused the resting membrane currents to fluctuate, possibly by altering cytosolic free Ca2+. Ba2+ (100 μmol/l), a blocker of the inwardly rectifying K+ conductance in sheep parotid cells, had no effect on the ACh-induced K+ current. We conclude that the ACh-induced K+ conductance in sheep parotid cells is pharmacologically distinct from both the outwardly rectifying (BK) K+ conductance and the inwardly rectifying K+ conductance seen in unstimulated cells. Given that in vitro perfusion and K+ efflux studies on other salivary glands in which BK channels dominate the resting conductance (e.g., the rat mandibular, rat parotid and mouse mandibular glands) have revealed an insensitivity to TEA, suggesting that BK channels do not carry the ACh-evoked K+ current, we propose that BK channels do not contribute substantially to the K+ current evoked by ACh in the secretory cells of most salivary glands.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 30 (1990), S. 596-602 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A series of commercial polystyrenes was tested using an instrumented impact tester to determine the fracture toughness Kc and critical strain energy release rate Gc. Over the range of Mw, 201,000 to 336,000, Kc increased from 1.38 MN/m3/2 to 1.76 MN/m3/2and Gc from 0.92 kJ/m2 to 1.60 kJ/m2. A linear correlation for Kc and Gc was seen with melt index, and an inverse relationship was obtained against molecular weight. Examination of the fracture surfaces revealed the presence of crack growth bands corresponding to the crack tip plastic zone size. It is suggested that these bands are the consequence of variations in crack growth along crazes that form in the crack tip stress field. As the crack propagates, the stress is relaxed locally, decreasing the growth rate allowing a new bundle of crazes to nucleate along which the crack advances. The spacing of these bands corresponds to the craze length formed in the plastic zone, and the band spacing increases with molecular weight.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 34 (1994), S. 1485-1491 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Low-density polyethylene (LDPE) and also linear low-density polyethylene (LLDPE) resins can be characterized by the degree of strain hardening and down-gaging during elongation. A new method for the determination of the apparent elongational flow characteristics is presented. In a small scale apparatus, a molten monofilament is stretched under nonisothermal conditions similar to those found in tubular film extrusion. Measurement of resistance to elongational flow and apparent elongational strain rates permit the comparison of the process-ability of different resins under specified conditions. The effect of melt temperature and extension ratio are examined. The importance of the molecular structure of both LDPE and LLDPE resins on these properties is also outlined.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...