ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-08-15
    Description: The vast majority of the mammalian genome has the potential to express noncoding RNA (ncRNA). The 11-subunit RNA exosome complex is the main source of cellular 3'-5' exoribonucleolytic activity and potentially regulates the mammalian noncoding transcriptome. Here we generated a mouse model in which the essential subunit Exosc3 of the RNA exosome complex can be conditionally deleted. Exosc3-deficient B cells lack the ability to undergo normal levels of class switch recombination and somatic hypermutation, two mutagenic DNA processes used to generate antibody diversity via the B-cell mutator protein activation-induced cytidine deaminase (AID). The transcriptome of Exosc3-deficient B cells has revealed the presence of many novel RNA exosome substrate ncRNAs. RNA exosome substrate RNAs include xTSS-RNAs, transcription start site (TSS)-associated antisense transcripts that can exceed 500 base pairs in length and are transcribed divergently from cognate coding gene transcripts. xTSS-RNAs are most strongly expressed at genes that accumulate AID-mediated somatic mutations and/or are frequent translocation partners of DNA double-strand breaks generated at Igh in B cells. Strikingly, translocations near TSSs or within gene bodies occur over regions of RNA exosome substrate ncRNA expression. These RNA exosome-regulated, antisense-transcribed regions of the B-cell genome recruit AID and accumulate single-strand DNA structures containing RNA-DNA hybrids. We propose that RNA exosome regulation of ncRNA recruits AID to single-strand DNA-forming sites of antisense and divergent transcription in the B-cell genome, thereby creating a link between ncRNA transcription and overall maintenance of B-cell genomic integrity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372240/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372240/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pefanis, Evangelos -- Wang, Jiguang -- Rothschild, Gerson -- Lim, Junghyun -- Chao, Jaime -- Rabadan, Raul -- Economides, Aris N -- Basu, Uttiya -- 1DP2OD008651-01/OD/NIH HHS/ -- 1R01AI099195-01A1/AI/NIAID NIH HHS/ -- 1R01CA179044-01A1/CA/NCI NIH HHS/ -- 1R01CA185486-01/CA/NCI NIH HHS/ -- 1U54CA121852-05/CA/NCI NIH HHS/ -- DP2 OD008651/OD/NIH HHS/ -- R01 AI099195/AI/NIAID NIH HHS/ -- U54 CA121852/CA/NCI NIH HHS/ -- England -- Nature. 2014 Oct 16;514(7522):389-93. doi: 10.1038/nature13580. Epub 2014 Aug 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA [2] Regeneron Pharmaceuticals, Tarrytown, New York 10591, USA [3]. ; 1] Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA [2] Department of Systems Biology and Department of Biomedical Informatics, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA [3]. ; 1] Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA [2]. ; Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA. ; Department of Systems Biology and Department of Biomedical Informatics, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA. ; Regeneron Pharmaceuticals, Tarrytown, New York 10591, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119026" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*metabolism ; Base Pairing ; Cytidine Deaminase/*metabolism ; DNA Breaks, Double-Stranded ; DNA, Single-Stranded/chemistry/genetics/metabolism ; Exosome Multienzyme Ribonuclease Complex/deficiency/genetics ; Exosomes/metabolism ; Female ; Genome/genetics ; Genomic Instability/genetics ; Immunoglobulin Class Switching/genetics ; Immunoglobulin Heavy Chains/genetics ; Male ; Mice ; Nucleic Acid Hybridization ; RNA, Antisense/biosynthesis/chemistry/genetics/metabolism ; RNA, Untranslated/*biosynthesis/chemistry/*genetics/metabolism ; RNA-Binding Proteins/genetics ; Somatic Hypermutation, Immunoglobulin/genetics ; Substrate Specificity ; Transcription Initiation Site ; Transcription, Genetic/*genetics ; Translocation, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...