ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Atomic, Molecular and Optical Physics  (1)
Collection
Keywords
Publisher
Years
  • 1
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Double-helical polynucleotide conformations, poly(dA)·poly(dT), poly(d(A-T))·poly(d(T-A))·poly(dG)·poly(dC), and poly(d(G-C))·poly(d(C-G)) are analyzed by the atom-atom potential method. The energy optimization is carried out in the space of eight independent geometric parameters using analytical procedures for the constraints, taking into account the flexibility of the β-D-deoxyribose rings. At the first stage, the full screening of atomic partial charges was assumed. The structures of the calculated B and the A forms of DNA are characterized by low energy and absence of short contacts; the dihedral angles are near the average values in the monomers. With the typical energy difference of 3-5 kcal/mol nucleotide pairs in all cases, the B form is more preferable as compared to the A form. At the final step the effect of the Coulomb term is evaluated for poly(dA)·poly(dT) using various values of the effective dielectric constant (ε = 28, 24, 20, 18, 14, 12, 10, 8, 6, 4, and 1). If ε ≤24, the energy optimization leads A to B. We discuss the stereochemical details of the intermediate conformations on the A-B path and hypothesize the nature of stability of the A and the B forms and the mechanism of the A-B transition.
    Additional Material: 3 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...