ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Atomic, Molecular and Optical Physics  (2)
  • Finite element analysis  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Annals of biomedical engineering 28 (2000), S. 318-330 
    ISSN: 1573-9686
    Keywords: Biphasic ; Poroelastic ; Cartilage ; Finite element analysis ; Cell mechanics ; Tissue growth ; Adaptation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract Experimental evidence suggests that cells are extremely sensitive to their mechanical environment and react directly to mechanical stimuli. At present, it is technically difficult to measure fluid pressure, stress, and strain in cells, and to determine the time-dependent deformation of chondrocytes. For this reason, there are no data in the published literature that show the dynamic behavior of chondrocytes in articular cartilage. Similarly, the dynamic chondrocyte mechanics have not been calculated using theoretical models that account for the influence of cell volumetric fraction on cartilage mechanical properties. In the present investigation, the location- and time-dependent stress-strain state and fluid pressure distribution in chondrocytes in unconfined compression tests were simulated numerically using a finite element method. The technique involved two basic steps: first, cartilage was approximated as a macroscopically homogenized material and the mechanical behavior of cartilage was obtained using the homogenized model; second, the solution of the time-dependent displacements and fluid pressure fields of the homogenized model was used as the time-dependent boundary conditions for a microscopic submodel to obtain average location- and time-dependent mechanical behavior of cells. Cells and extracellular matrix were assumed to be biphasic materials composed of a fluid phase and a hyperelastic solid phase. The hydraulic permeability was assumed to be deformation dependent and the analysis was performed using a finite deformation approach. Numerical tests were made using configurations similar to those of experiments described in the literature. Our simulations show that the mechanical response of chondrocytes to cartilage loading depends on time, fluid boundary conditions, and the locations of the cells within the specimen. The present results are the first to suggest that chondrocyte deformation in a stress-relaxation type test may exceed the imposed system deformation by a factor of 3–4, that chondrocyte deformations are highly dynamic and do not reach a steady state within about 20 min of steady compression (in an unconfined test), and that cell deformations are very much location dependent. © 2000 Biomedical Engineering Society. PAC00: 8719Rr, 8717Aa, 0270Dh
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 38 (1990), S. 873-879 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: As well as being of interest in their own right, many of the essential features of the lattice properties of crystalline atomic hydrogen should be interpretable in terms of the lattice properties of one- or two-layer hydrogen films. Here we present optimized equilibrium lattice parameters for monatomic hydrogen one- and two-layer films in several Bravais lattices as determined by all electron, full potential localdensity-approximation calculations.
    Additional Material: 4 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 48 (1993), S. 219-226 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In our previous work, the stopping properties of metallic and covalent films were investigated. Here we consider an ionically bound film. The energy loss of a proton in an LiF monolayer (LiF-1L) is calculated in orbital fashion, based on kinetic theory. The required momentum density and mean excitation energy are obtained from the local density approximation and local plasma approximation respectively. For comparison, the LiF molecule is treated by use of a large intermolecular distance in the film. We find the stopping cross section of the LiF molecule to be only slightly larger than that for the LiF-1L. The Bragg rule (additivity of stopping for the corresponding atoms) is not valid for the ionically bound molecule nor the corresponding extended system, but may be valid if additivity of stopping of atomic ions is assumed. © 1993 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...