ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Atmospheric science. ; Measurement. ; Measuring instruments. ; Geographic information systems. ; Lasers. ; Outer space Exploration. ; Astronautics. ; Atmospheric Science. ; Measurement Science and Instrumentation. ; Geographical Information System. ; Laser. ; Space Exploration and Astronautics.
    Description / Table of Contents: Chapter 1. Rotational Raman scattering through narrow-band interference filters: investigating uncertainties using a new Rayleigh scattering code developed within ACTRIS -- Chapter 2. Performance of Low-Cost, Diode-Based HSRL System with Simplified Optical Setup -- Chapter 3. Sensitivity Study on the Performance of the Single Calculus Chain Aerosol Layering Module -- Chapter 4. Particle Complex Refractive Index From 3+2 HSRL/Raman Lidar Measurements: Conditions of Accurate Retrieval, Uncertainties and Constraints Provided by Information About RH -- Chapter 5. Field Testing of a Diode-Laser-Based Micro Pulse Differential Absorption Lidar System to Measure Atmospheric Thermodynamic Variables -- Chapter 6. SEMICONDUCTOR LIDAR FOR QUANTITATIVE ATMOSPHERIC PROFILING -- Chapter 7. Atomic Barium Vapor Filter for Ultraviolet High Spectral Resolution Lidar -- Chapter 8. Future Lidars for Cutting-Edge Sciences in Ionosphere-Thermosphere-Mesosphere-Stratosphere Physics and Space-Atmosphere Coupling -- Chapter 9. Polarization Lidar for Monitoring Dust Particle Orientation: First Measurements -- Chapter 10. Dust flow distribution measurement by low coherence Doppler lidar -- Chapter 11. A Multi-wavelength LED lidar for near ground atmospheric monitoring -- Chapter 12. Development of low-cost high-spectral-resolution lidar using compact multimode laser for air quality measurement -- Chapter 13. Deep Learning Based Convective Boundary Layer Determination for Aerosol and Wind Profiles observed by Wind Lidar -- Chapter 14. LITES: Laboratory Investigations of Atmospheric Aerosol Composition by Raman-Scattering and Fluorescence Spectra -- Chapter 15. Performance Simulation of a Raman Lidar for the Retrieval of CO2 Atmospheric Profiles -- Chapter 16. ALL FIBER FREE-RUNNING DUAL-COMB RANGING SYSTEM -- Chapter 17. gPCE Uncertainty Quantication Modeling of LiDAR for Bathymetric and Earth Science Applications -- Chapter 18. When can Poisson random variables be approximated as Gaussian? -- Chapter 19. Enhancing the Performance of the MicroPulse DIAL through Poisson Total Variation Signal Processing -- Chapter 20. Development of Micro Pulse Lidar Network (MPLNET) Level 3 Satellite Validation Products in Advance of the EarthCARE Mission -- Chapter 21. 3D Point Cloud Classification using Drone-based Scanning LIDAR and Signal Diversity -- Chapter 22. Design and Validation of an Elastic Lidar Simulator for Testing Potential New Systems for Aerosol Typing -- Chapter 23. Performance of Pulsed Wind Lidar Based on Optical Hybrid -- Chapter 24. Demonstrating Capabilities of Multiple-Beam Airborne Doppler Lidar Using a LES-based Simulator -- Chapter 25. All-Solid State Iron Resonance Lidar for Measurement of Temperature and Winds in the Upper Mesosphere and Lower Thermosphere -- Chapter 26. Improved Remote Operation Capabilities for the NASA GSFC Tropospheric Ozone Lidar for Routine Ozone Profiling for Satellite Evaluation -- Chapter 27. A wind, temperature, H2O and CO2 scanning lidar mobile observatory for a 3D thermodynamic view of the atmosphere -- Chapter 28. Low-Cost and Lightweight Hyperspectral Lidar for Mapping Vegetation Fluorescence -- Chapter 29. SO2 Plumes Observation with LMOL: Theory, Modeling, and Validation -- Chapter 30. Possible Use of Iodine Absorption/Fluorescence Cell in High-Spectral-Resolution Lidar -- Chapter 31. Ten Years of Interdisciplinary Lidar Applications at SCNU, Guangzhou -- Chapter 32. Feasibility studies of the dual-polarization imaging lidar based on the division-of-focal-plane scheme for atmospheric remote sensing -- Chapter 33. An Algorithm to Retrieve Aerosol Optical Properties from ATLID and MSI Measurements -- Chapter 34. Observation of Polar Stratospheric Clouds at Dome C, Antarctica -- Chapter 35. Laboratory Evaluation of the Lidar Particle Depolarization Ratio (PDR) of Sulfates, Soot, and Mineral Dust at 180.0° Lidar Backscattering Angle -- Chapter 36. Fresh biomass burning aerosol observed in Potenza with multiwavelength Raman Lidar and sun-photometer -- Chapter 37. Aerosol Studies with Spectrometric Fluorescence and Raman Lidar -- Chapter 38. Continuous Observations of Aerosol-Weather Relationship from a Horizontal Lidar to Simulate Monitoring of Radioactive Dust in Fukashima, Japan -- Chapter 39. Statistical Simulation of Laser Pulse Propagation through Cirrus-cloudy Atmosphere -- Chapter 40. Aerosol Spatial Distribution Observed by a Mobile Vehicle Lidar with Optics for Near Range Detection -- Chapter 41. Cloud Base Height Correlation between a Co-located Micro-Pulse Lidar and a Lufft CHM15k Ceilometer -- Chapter 42. Comparison of Local and Transregional Atmospheric Particles Over the Urmia Lake in Northwest Iran, Using a Polarization Lidar Recordings -- Chapter 43. Properties of Polar Stratospheric Clouds over the European Arctic from Ground-Based Lidar -- Chapter 44. Two decades analysis of cirrus cloud radiative effects by lidar observations in the frame of NASA MPLNET lidar network -- Chapter 45. Temporal Variability of the Aerosol Properties Using a Cimel Sun/Lunar Photometer over Thessaloniki, Greece: Synergy With the Upgraded THELISYS Lidar System -- Chapter 46. Long-Term Changes of Optical Properties of Mineral Dust and Its Mixtures Derived from Raman Polariza-tion Water Vapor Lidar in Central Europe -- Chapter 47. Planetary Boundary Layer Height Measurements Using MicroPulse DIAL -- Chapter 48. Performance Modeling of a Diode-Laser-Based Direct Detection Doppler Lidar -- Chapter 49. Observation of Water Vapor Profiles by Raman Lidar with 266 nm laser in Tokyo -- Chapter 50. A 355-NM DIRECT-DETECTION DOPPLER WIND LIDAR FOR VERTICAL ATMOSPHERIC MOTION -- Chapter 51. Aircraft Wake Vortex Recognition and Classification Based on Coherent Doppler Lidar and Convolutional Neural Networks -- Chapter 52. MicroPulse Differential Absorption Lidar for Temperature Retrieval in the Lower Troposphere -- Chapter 53. Long Term Calibration of a Pure Rotational Raman Lidar for Temperature Measurements Using Radiosondes and Solar Background -- Chapter 54. Powerful Raman-Lidar for water vapor in the free troposphere and lower stratosphere as well as temperature in the stratosphere and mesosphere -- Chapter 55. Observation of Rainfall Velocity and Raindrop Size Using Power Spectrum of Coherent Doppler Lidar -- Chapter 56. Comparison of Lower Tropospheric Water Vapor Vertical Distribution Measured with Raman lidar and DIAL and Their Impact of Data Assimilation in Numerical Weather Prediction Model -- Chapter 57. Temperature Variations in the Middle Atmosphere Studied with Rayleigh Lidar at Haikou (19.9°N, 110.3°E) -- Chapter 58. Convective boundary layer sensible and latent heat flux lidar observations and towards new model parametrizations -- Chapter 59. Observation of Structure of Marine Atmospheric Boundary Layer by Ceilometer over the Kuroshio Current.-Chapter 60. ABL Height Different Estimation by Lidar in the Frame of HyMeX SOP1 Campaign -- Chapter 61. Temporal Evolution of Wavelength and Orientation of Atmospheric Canopy Waves -- Chapter 62. Assessment of Planetary Boundary Layer Height Variations over a Mountain Region in Western Himalayas -- Chapter 63. Analysis of Updraft Characteristics from an Airborne Micro-Pulsed Doppler Lidar During FIREX-AQ -- Chapter 64. Diurnal Variability of MLH and Ozone in NYC Urban and Coastal Area from an Integrated Observation during LISTOS 2018 -- Chapter 65. Boundary Layer Dynamics, Aerosol Composition, and Air Quality in the Urban Background of Stuttgart in Winter -- Chapter 66. DIAL Ozone Measurement Capability Added to NASA’s HSRL-2 Instrument Demonstrates Troposheric Ozone Variability Over Houston Area -- Chapter 67. Trajectory Analysis of CO2 Concentration Increase Events in the Nocturnal Atmospheric Boundary Layer Observed by the Differential Absorption Lidar -- Chapter 68. Efficiency Assessment of Single Cell Raman Gas Mixture for DIAL Ozone Lidar -- Chapter 69. COmpact RamaN lidar for Atmospheric CO2 and ThERmodyNamic ProfilING - CONCERNING -- Chapter 70. Characterization of Recent Aerosol Events Occurring in the Subtropical North Atlantic Region Using a CIMEL CE376 GPN Micro-LiDAR -- Chapter 71. Tropospheric Ozone Differential Absorption Lidar (DIAL) Development at New York City -- Chapter 72. Accounting for the polarizing effects introduced from non ideal quarter-wave plates in lidar measurements of the circular depolarization ratio -- Chapter 73. Investigating the geometrical and optical properties of the persistent stratospheric aerosol layer observed over Thessaloniki, Greece during 2019 -- Chapter 74. New Lidar Data Processing Techniques for Improving the Detection Range and Accuracy of Atmospheric Gravity Wave Measurements -- Chapter 75. Extending the Useful Range of Fluorescence LIDAR Data by Applying the Layered Binning Technique -- Chapter 76. Interaction between sea wave and surface atmosphere by shallow angle LED lidar -- Chapter 77. First results of the COLOR (CDOM-proxy retrieval from aeOLus ObseRvations) project -- Chapter 78. Dual wavelength heterodyne LDA for velocity and size distribution measurements in ocean water flows -- Chapter 79. Mitigation Strategy for the Impact of Low Energy Laser Pulses in CALIOP Calibration and Level 2 Retrievals -- Chapter 80. Introducing the Cloud Aerosol Lidar for Global Scale Observations of the Ocean-Land-Atmosphere System – CALIGOLA -- Chapter 81. An Overview of the NASA Atmosphere Observing System Inclined Mission (AOS-I) and the Role of Backscatter Lidar -- Chapter 82. Proposal for the Space-borne Integrated Path Differential Absorption (IPDA) Lidar for Lower Tropospheric Water Vapor Observations -- Chapter 83. Assimilation of Aerosol Observations from the Future Spaceborne Lidar Onboard the AOS Mission into the MOCAGE Chemistry-Transport Model -- Chapter 84. Aerosol Optical Properties over Western Himalayas Region by Raman Lidar during the December 2019 Annular Solar Eclipse -- Chapte.
    Abstract: This volume presents papers from the biennial International Laser Radar Conference (ILRC), the world’s leading event in the field of atmospheric research using lidar. With growing environmental concerns to address such as air quality deterioration, stratospheric ozone depletion, extreme weather events, and changing climate, the lidar technique has never been as critical as it is today to monitor, alert, and help solve current and emerging problems of this century. The 30th occurrence of the ILRC unveils many of the newest results and discoveries in atmospheric science and laser remote sensing technology. The 30th ILRC conference program included all contemporary ILRC themes, leveraging on both the past events’ legacy and the latest advances in lidar technologies and scientific discoveries, with participation by young scientists particularly encouraged. This proceedings volume includes a compilation of cutting-edge research on the following themes: new lidar techniques and methodologies; measurement of clouds and aerosol properties; atmospheric temperature, wind, turbulence, and waves; atmospheric boundary layer processes and their role in air quality and climate; greenhouse gases, tracers, and transport in the free troposphere and above; the upper mesosphere and lower thermosphere; synergistic use of multiple instruments and techniques, networks and campaigns; model validation and data assimilation using lidar measurements; space-borne lidar missions, instruments and science; ocean lidar instrumentation, techniques, and retrievals; and past, present and future synergy of heterodyne and direct detection lidar applications. In addition, special sessions celebrated 50 years of lidar atmospheric observations since the first ILRC, comprising review talks followed by a plenary discussion on anticipated future directions.
    Type of Medium: Online Resource
    Pages: XXIV, 892 p. 374 illus., 352 illus. in color. , online resource.
    Edition: 1st ed. 2023.
    ISBN: 9783031378188
    Series Statement: Springer Atmospheric Sciences,
    DDC: 551.5
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: Temperature measurements in the middle atmosphere using Rayleigh lidars have been performed for several decades now. The high accuracy and vertical resolution provided by lidars allow to study the temperature variability at various scales with high confidence levels. One of the numerous applications is the study of the middle atmospheric thermal tides. Although Rayleigh lidar measurements are basically possible only at nighttime, diurnal and semidiurnal components can often be extracted if the results are taken with care and correctly interpreted. Using results from more than 200 hours of nighttime measurements obtained by lidar in October 1996 and 1997 at Mauna Loa Observatory, Hawaii, a study of the middle atmospheric (25-90 km) thermal tides is presented in this paper. The amplitudes and phases of the diurnal and semidiurnal components were calculated for some altitudes where the fits converged significantly, and compared to that of the Global Scale Wave Model (GSWM).
    Keywords: Meteorology and Climatology
    Type: Nineteenth International Laser Radar Conference; 513-516; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: The middle atmosphere (20 to 90 km altitude) ha received increasing interest from the scientific community during the last decades, especially since such problems as polar ozone depletion and climatic change have become so important. Temperature profiles have been obtained in this region using a variety of satellite-, rocket-, and balloon-borne instruments as well as some ground-based systems. One of the more promising of these instruments, especially for long-term high resolution measurements, is the lidar. Measurements of laser radiation Rayleigh backscattered, or Raman scattered, by atmospheric air molecules can be used to determine the relative air density profile and subsequently the temperature profile if it is assumed that the atmosphere is in hydrostatic equilibrium and follows the ideal gas law. The high vertical and spatial resolution make the lidar a well adapted instrument for the study of many middle atmospheric processes and phenomena as well as for the evaluation and validation of temperature measurements from satellites, such as the Upper Atmosphere Research Satellite (UARS). In the Network for Detection of Stratospheric Change (NDSC) lidar is the core instrument for measuring middle atmosphere temperature profiles. Using the best lidar analysis algorithm possible is therefore of crucial importance. In this work, the JPL and CNRS/SA lidar analysis software were evaluated. The results of this evaluation allowed the programs to be corrected and optimized and new production software versions were produced. First, a brief description of the lidar technique and the method used to simulate lidar raw-data profiles from a given temperature profile is presented. Evaluation and optimization of the JPL and CNRS/SA algorithms are then discussed.
    Keywords: Computer Programming and Software
    Type: Nineteenth International Laser Radar Conference; 481-484; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July August 2007 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescope, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for groundbased use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Propulsion Laboratory s Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atmospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During theMOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE-II measurements, along with numerical simulation, were used to determine that the likely reason for the suboptimal airborne aerosol extinction performance during theWAVES_2007 campaign was amisaligned interference filter. With full laser power and a properly tuned interference filter,RASL is shown to be capable ofmeasuring themain water vapor and aerosol parameters with temporal resolutions of between 2 and 45 s and spatial resolutions ranging from 30 to 330 m from a flight altitude of 8 km with precision of generally less than 10%, providing performance that is competitive with some airborne Differential Absorption Lidar (DIAL) water vapor and High Spectral Resolution Lidar (HSRL) aerosol instruments. The use of diode-pumped laser technology would improve the performance of an airborne Raman lidar and permit additional instrumentation to be carried on board a small research aircraft. The combined airborne and ground-based measurements presented here demonstrate a level of versatility in Raman lidar that may be impossible to duplicate with any other single lidar technique.
    Keywords: Meteorology and Climatology
    Type: Journal of Atmospheric and Oceanic Technology (ISSN 0739-0572); Volume 27; Issue 11; 1781?1801
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-11
    Description: In mid-March 2005 the northern lower stratospheric polar vortex experienced a severe stretching episode, bringing a large polar filament far south of Alaska toward Hawaii. This meridional intrusion of rare extent, coinciding with the polar vortex final warming and breakdown, was followed by a zonal stretching in the wake of the easterly propagating subtropical main flow. This caused polar air to remain over Hawaii for several days before diluting into the subtropics. After being successfully forecasted to pass over Hawaii by the high-resolution potential vorticity advection model Modele Isentrope du transport Meso-echelle de l'Ozone Stratospherique par Advection (MIMOSA), the filament was observed on isentropic surfaces between 415 K and 455 K (17-20 km) by the Jet Propulsion Laboratory stratospheric ozone lidar measurements at Mauna Loa Observatory, Hawaii, between 16 and 19 March 2005. It was materialized as a thin layer of enhanced ozone peaking at 1.6 ppmv in a region where the climatological values usually average 1.0 ppmv. These values were compared to those obtained by the three dimensional Chemistry-Transport Model MIMOSA-CHIM. Agreement between lidar and model was excellent, particularly in the similar appearance of the ozone peak near 435 K (18.5 km) on 16 March, and the persistence of this layer at higher isentropic levels for the following three days. Passive ozone, also modeled by MIMOSA-CHIM, was at about 3-4 ppmv inside the filament while above Hawaii. A detailed history of the modeled chemistry inside the filament suggests that the air mass was still polar ozone- depleted when passing over Hawaii. The filament quickly separated from the main vortex after its Hawaiian overpass. It never reconnected and, in less than 10 days, dispersed entirely in the subtropics.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research (ISSN 0148-0227); Volume 111
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: Most recent assessments of long-term changes in the vertical distribution of ozone (by e.g. WMO and SI2N) rely on data sets that integrate observations by multiple instruments. Several merged satellite ozone profile records have been developed over the past few years; each considers a particular set of instruments and adopts a particular merging strategy. Their intercomparison by Tummon et al. revealed that the current merging schemes are not sufficiently refined to correct for all major differences between the limb/occultation records. This shortcoming introduces uncertainties that need to be known to obtain a sound interpretation of the different satellite-based trend studies. In practice however, producing realistic uncertainty estimates is an intricate task which depends on a sufficiently detailed understanding of the characteristics of each contributing data record and on the subsequent interplay and propagation of these through the merging scheme. Our presentation discusses these challenges in the context of limb/occultation ozone profile records, but they are equally relevant for other instruments and atmospheric measurements. We start by showing how the NDACC and GAW-affiliated ground-based networks of ozonesonde and lidar instruments allowed us to characterize fourteen limb/occultation ozone profile records, together providing a global view over the last three decades. Our prime focus will be on techniques to estimate long-term drift since our results suggest this is the main driver of the major trend differences between the merged data sets. The single-instrument drift estimates are then used for a tentative estimate of the systematic uncertainty in the profile trends from merged data records. We conclude by reflecting on possible further steps needed to improve the merging algorithms and to obtain a better characterization of the uncertainties involved.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN30387 , AGU 2015 Fall Meeting; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-01-14
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: JPL-CL-16-4024 , Quadrennial Ozone Symposium; Sep 04, 2016 - Sep 09, 2016; Edinburgh, Scotland; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: Relative humidity (RH) measurements from Vaisala RS92 radiosondes are widely used in both research and operational applications, although the measurement accuracy is not well characterized as a function of its known dependences on height, RH, and time of day (or solar altitude angle). This study characterizes RS92 mean bias error as a function of its dependences by comparing simultaneous measurements from RS92 radiosondes and from three reference instruments of known accuracy. The cryogenic frostpoint hygrometer (CFH) gives the RS92 accuracy above the 700 mb level; the ARM microwave radiometer gives the RS92 accuracy in the lower troposphere; and the ARM SurTHref system gives the RS92 accuracy at the surface using 6 RH probes with NIST-traceable calibrations. These RS92 assessments are combined using the principle of Consensus Referencing to yield a detailed estimate of RS92 accuracy from the surface to the lowermost stratosphere. An empirical bias correction is derived to remove the mean bias error, yielding corrected RS92 measurements whose mean accuracy is estimated to be +/-3% of the measured RH value for nighttime soundings and +/-4% for daytime soundings, plus an RH offset uncertainty of +/-0.5%RH that is significant for dry conditions. The accuracy of individual RS92 soundings is further characterized by the 1-sigma "production variability," estimated to be +/-1.5% of the measured RH value. The daytime bias correction should not be applied to cloudy daytime soundings, because clouds affect the solar radiation error in a complicated and uncharacterized way.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: 1. MOHAVE+MOHAVE II = very successful. 2. MOHAVE -〉 Fluorescence was found to be inherent to all three participating lidars. 3. MOHAVE II -〉 Fluorescence was removed and agreement with CFH was extremely good up to 16-18 km altitude. 4. MOHAVE II -〉 Calibration tests revealed unsuspected shortfalls of widely used techniques, with important implications for their applicability to longterm measurements. 5. A factor of 5 in future lidar signal-to-noise ratio is reasonably achievable. When this level is achieved water vapor Raman lidar will become a key instrument for the long-term monitoring of water vapor in the UT/LS
    Keywords: Meteorology and Climatology
    Type: First ISSI/NDACC Water Vapor Workshop; Feb 11, 2008 - Feb 14, 2008; Bern; Switzerland
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE, MOHAVE-II) inter-comparison campaigns took place at the Jet Propulsion Laboratory (JPL) Table Mountain Facility (TMF, 34.5(sup o)N) in October 2006 and 2007 respectively. Both campaigns aimed at evaluating the capability of three Raman lidars for the measurement of water vapor in the upper troposphere and lower stratosphere (UT/LS). During each campaign, more than 200 hours of lidar measurements were compared to balloon borne measurements obtained from 10 Cryogenic Frost-point Hygrometer (CFH) flights and over 50 Vaisala RS92 radiosonde flights. During MOHAVE, fluorescence in all three lidar receivers was identified, causing a significant wet bias above 10-12 km in the lidar profiles as compared to the CFH. All three lidars were reconfigured after MOHAVE, and no such bias was observed during the MOHAVE-II campaign. The lidar profiles agreed very well with the CFH up to 13-17 km altitude, where the lidar measurements become noise limited. The results from MOHAVE-II have shown that the water vapor Raman lidar will be an appropriate technique for the long-term monitoring of water vapor in the UT/LS given a slight increase in its power-aperture, as well as careful calibration.
    Keywords: Meteorology and Climatology
    Type: 24th International Laser radar Remote Sensing Conference (ILRC); Jun 23, 2008; Boulder, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...