ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Atmospheric science. ; Measurement. ; Measuring instruments. ; Geographic information systems. ; Lasers. ; Outer space Exploration. ; Astronautics. ; Atmospheric Science. ; Measurement Science and Instrumentation. ; Geographical Information System. ; Laser. ; Space Exploration and Astronautics.
    Description / Table of Contents: Chapter 1. Rotational Raman scattering through narrow-band interference filters: investigating uncertainties using a new Rayleigh scattering code developed within ACTRIS -- Chapter 2. Performance of Low-Cost, Diode-Based HSRL System with Simplified Optical Setup -- Chapter 3. Sensitivity Study on the Performance of the Single Calculus Chain Aerosol Layering Module -- Chapter 4. Particle Complex Refractive Index From 3+2 HSRL/Raman Lidar Measurements: Conditions of Accurate Retrieval, Uncertainties and Constraints Provided by Information About RH -- Chapter 5. Field Testing of a Diode-Laser-Based Micro Pulse Differential Absorption Lidar System to Measure Atmospheric Thermodynamic Variables -- Chapter 6. SEMICONDUCTOR LIDAR FOR QUANTITATIVE ATMOSPHERIC PROFILING -- Chapter 7. Atomic Barium Vapor Filter for Ultraviolet High Spectral Resolution Lidar -- Chapter 8. Future Lidars for Cutting-Edge Sciences in Ionosphere-Thermosphere-Mesosphere-Stratosphere Physics and Space-Atmosphere Coupling -- Chapter 9. Polarization Lidar for Monitoring Dust Particle Orientation: First Measurements -- Chapter 10. Dust flow distribution measurement by low coherence Doppler lidar -- Chapter 11. A Multi-wavelength LED lidar for near ground atmospheric monitoring -- Chapter 12. Development of low-cost high-spectral-resolution lidar using compact multimode laser for air quality measurement -- Chapter 13. Deep Learning Based Convective Boundary Layer Determination for Aerosol and Wind Profiles observed by Wind Lidar -- Chapter 14. LITES: Laboratory Investigations of Atmospheric Aerosol Composition by Raman-Scattering and Fluorescence Spectra -- Chapter 15. Performance Simulation of a Raman Lidar for the Retrieval of CO2 Atmospheric Profiles -- Chapter 16. ALL FIBER FREE-RUNNING DUAL-COMB RANGING SYSTEM -- Chapter 17. gPCE Uncertainty Quantication Modeling of LiDAR for Bathymetric and Earth Science Applications -- Chapter 18. When can Poisson random variables be approximated as Gaussian? -- Chapter 19. Enhancing the Performance of the MicroPulse DIAL through Poisson Total Variation Signal Processing -- Chapter 20. Development of Micro Pulse Lidar Network (MPLNET) Level 3 Satellite Validation Products in Advance of the EarthCARE Mission -- Chapter 21. 3D Point Cloud Classification using Drone-based Scanning LIDAR and Signal Diversity -- Chapter 22. Design and Validation of an Elastic Lidar Simulator for Testing Potential New Systems for Aerosol Typing -- Chapter 23. Performance of Pulsed Wind Lidar Based on Optical Hybrid -- Chapter 24. Demonstrating Capabilities of Multiple-Beam Airborne Doppler Lidar Using a LES-based Simulator -- Chapter 25. All-Solid State Iron Resonance Lidar for Measurement of Temperature and Winds in the Upper Mesosphere and Lower Thermosphere -- Chapter 26. Improved Remote Operation Capabilities for the NASA GSFC Tropospheric Ozone Lidar for Routine Ozone Profiling for Satellite Evaluation -- Chapter 27. A wind, temperature, H2O and CO2 scanning lidar mobile observatory for a 3D thermodynamic view of the atmosphere -- Chapter 28. Low-Cost and Lightweight Hyperspectral Lidar for Mapping Vegetation Fluorescence -- Chapter 29. SO2 Plumes Observation with LMOL: Theory, Modeling, and Validation -- Chapter 30. Possible Use of Iodine Absorption/Fluorescence Cell in High-Spectral-Resolution Lidar -- Chapter 31. Ten Years of Interdisciplinary Lidar Applications at SCNU, Guangzhou -- Chapter 32. Feasibility studies of the dual-polarization imaging lidar based on the division-of-focal-plane scheme for atmospheric remote sensing -- Chapter 33. An Algorithm to Retrieve Aerosol Optical Properties from ATLID and MSI Measurements -- Chapter 34. Observation of Polar Stratospheric Clouds at Dome C, Antarctica -- Chapter 35. Laboratory Evaluation of the Lidar Particle Depolarization Ratio (PDR) of Sulfates, Soot, and Mineral Dust at 180.0° Lidar Backscattering Angle -- Chapter 36. Fresh biomass burning aerosol observed in Potenza with multiwavelength Raman Lidar and sun-photometer -- Chapter 37. Aerosol Studies with Spectrometric Fluorescence and Raman Lidar -- Chapter 38. Continuous Observations of Aerosol-Weather Relationship from a Horizontal Lidar to Simulate Monitoring of Radioactive Dust in Fukashima, Japan -- Chapter 39. Statistical Simulation of Laser Pulse Propagation through Cirrus-cloudy Atmosphere -- Chapter 40. Aerosol Spatial Distribution Observed by a Mobile Vehicle Lidar with Optics for Near Range Detection -- Chapter 41. Cloud Base Height Correlation between a Co-located Micro-Pulse Lidar and a Lufft CHM15k Ceilometer -- Chapter 42. Comparison of Local and Transregional Atmospheric Particles Over the Urmia Lake in Northwest Iran, Using a Polarization Lidar Recordings -- Chapter 43. Properties of Polar Stratospheric Clouds over the European Arctic from Ground-Based Lidar -- Chapter 44. Two decades analysis of cirrus cloud radiative effects by lidar observations in the frame of NASA MPLNET lidar network -- Chapter 45. Temporal Variability of the Aerosol Properties Using a Cimel Sun/Lunar Photometer over Thessaloniki, Greece: Synergy With the Upgraded THELISYS Lidar System -- Chapter 46. Long-Term Changes of Optical Properties of Mineral Dust and Its Mixtures Derived from Raman Polariza-tion Water Vapor Lidar in Central Europe -- Chapter 47. Planetary Boundary Layer Height Measurements Using MicroPulse DIAL -- Chapter 48. Performance Modeling of a Diode-Laser-Based Direct Detection Doppler Lidar -- Chapter 49. Observation of Water Vapor Profiles by Raman Lidar with 266 nm laser in Tokyo -- Chapter 50. A 355-NM DIRECT-DETECTION DOPPLER WIND LIDAR FOR VERTICAL ATMOSPHERIC MOTION -- Chapter 51. Aircraft Wake Vortex Recognition and Classification Based on Coherent Doppler Lidar and Convolutional Neural Networks -- Chapter 52. MicroPulse Differential Absorption Lidar for Temperature Retrieval in the Lower Troposphere -- Chapter 53. Long Term Calibration of a Pure Rotational Raman Lidar for Temperature Measurements Using Radiosondes and Solar Background -- Chapter 54. Powerful Raman-Lidar for water vapor in the free troposphere and lower stratosphere as well as temperature in the stratosphere and mesosphere -- Chapter 55. Observation of Rainfall Velocity and Raindrop Size Using Power Spectrum of Coherent Doppler Lidar -- Chapter 56. Comparison of Lower Tropospheric Water Vapor Vertical Distribution Measured with Raman lidar and DIAL and Their Impact of Data Assimilation in Numerical Weather Prediction Model -- Chapter 57. Temperature Variations in the Middle Atmosphere Studied with Rayleigh Lidar at Haikou (19.9°N, 110.3°E) -- Chapter 58. Convective boundary layer sensible and latent heat flux lidar observations and towards new model parametrizations -- Chapter 59. Observation of Structure of Marine Atmospheric Boundary Layer by Ceilometer over the Kuroshio Current.-Chapter 60. ABL Height Different Estimation by Lidar in the Frame of HyMeX SOP1 Campaign -- Chapter 61. Temporal Evolution of Wavelength and Orientation of Atmospheric Canopy Waves -- Chapter 62. Assessment of Planetary Boundary Layer Height Variations over a Mountain Region in Western Himalayas -- Chapter 63. Analysis of Updraft Characteristics from an Airborne Micro-Pulsed Doppler Lidar During FIREX-AQ -- Chapter 64. Diurnal Variability of MLH and Ozone in NYC Urban and Coastal Area from an Integrated Observation during LISTOS 2018 -- Chapter 65. Boundary Layer Dynamics, Aerosol Composition, and Air Quality in the Urban Background of Stuttgart in Winter -- Chapter 66. DIAL Ozone Measurement Capability Added to NASA’s HSRL-2 Instrument Demonstrates Troposheric Ozone Variability Over Houston Area -- Chapter 67. Trajectory Analysis of CO2 Concentration Increase Events in the Nocturnal Atmospheric Boundary Layer Observed by the Differential Absorption Lidar -- Chapter 68. Efficiency Assessment of Single Cell Raman Gas Mixture for DIAL Ozone Lidar -- Chapter 69. COmpact RamaN lidar for Atmospheric CO2 and ThERmodyNamic ProfilING - CONCERNING -- Chapter 70. Characterization of Recent Aerosol Events Occurring in the Subtropical North Atlantic Region Using a CIMEL CE376 GPN Micro-LiDAR -- Chapter 71. Tropospheric Ozone Differential Absorption Lidar (DIAL) Development at New York City -- Chapter 72. Accounting for the polarizing effects introduced from non ideal quarter-wave plates in lidar measurements of the circular depolarization ratio -- Chapter 73. Investigating the geometrical and optical properties of the persistent stratospheric aerosol layer observed over Thessaloniki, Greece during 2019 -- Chapter 74. New Lidar Data Processing Techniques for Improving the Detection Range and Accuracy of Atmospheric Gravity Wave Measurements -- Chapter 75. Extending the Useful Range of Fluorescence LIDAR Data by Applying the Layered Binning Technique -- Chapter 76. Interaction between sea wave and surface atmosphere by shallow angle LED lidar -- Chapter 77. First results of the COLOR (CDOM-proxy retrieval from aeOLus ObseRvations) project -- Chapter 78. Dual wavelength heterodyne LDA for velocity and size distribution measurements in ocean water flows -- Chapter 79. Mitigation Strategy for the Impact of Low Energy Laser Pulses in CALIOP Calibration and Level 2 Retrievals -- Chapter 80. Introducing the Cloud Aerosol Lidar for Global Scale Observations of the Ocean-Land-Atmosphere System – CALIGOLA -- Chapter 81. An Overview of the NASA Atmosphere Observing System Inclined Mission (AOS-I) and the Role of Backscatter Lidar -- Chapter 82. Proposal for the Space-borne Integrated Path Differential Absorption (IPDA) Lidar for Lower Tropospheric Water Vapor Observations -- Chapter 83. Assimilation of Aerosol Observations from the Future Spaceborne Lidar Onboard the AOS Mission into the MOCAGE Chemistry-Transport Model -- Chapter 84. Aerosol Optical Properties over Western Himalayas Region by Raman Lidar during the December 2019 Annular Solar Eclipse -- Chapte.
    Abstract: This volume presents papers from the biennial International Laser Radar Conference (ILRC), the world’s leading event in the field of atmospheric research using lidar. With growing environmental concerns to address such as air quality deterioration, stratospheric ozone depletion, extreme weather events, and changing climate, the lidar technique has never been as critical as it is today to monitor, alert, and help solve current and emerging problems of this century. The 30th occurrence of the ILRC unveils many of the newest results and discoveries in atmospheric science and laser remote sensing technology. The 30th ILRC conference program included all contemporary ILRC themes, leveraging on both the past events’ legacy and the latest advances in lidar technologies and scientific discoveries, with participation by young scientists particularly encouraged. This proceedings volume includes a compilation of cutting-edge research on the following themes: new lidar techniques and methodologies; measurement of clouds and aerosol properties; atmospheric temperature, wind, turbulence, and waves; atmospheric boundary layer processes and their role in air quality and climate; greenhouse gases, tracers, and transport in the free troposphere and above; the upper mesosphere and lower thermosphere; synergistic use of multiple instruments and techniques, networks and campaigns; model validation and data assimilation using lidar measurements; space-borne lidar missions, instruments and science; ocean lidar instrumentation, techniques, and retrievals; and past, present and future synergy of heterodyne and direct detection lidar applications. In addition, special sessions celebrated 50 years of lidar atmospheric observations since the first ILRC, comprising review talks followed by a plenary discussion on anticipated future directions.
    Type of Medium: Online Resource
    Pages: XXIV, 892 p. 374 illus., 352 illus. in color. , online resource.
    Edition: 1st ed. 2023.
    ISBN: 9783031378188
    Series Statement: Springer Atmospheric Sciences,
    DDC: 551.5
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: The middle atmosphere (20 to 90 km altitude) ha received increasing interest from the scientific community during the last decades, especially since such problems as polar ozone depletion and climatic change have become so important. Temperature profiles have been obtained in this region using a variety of satellite-, rocket-, and balloon-borne instruments as well as some ground-based systems. One of the more promising of these instruments, especially for long-term high resolution measurements, is the lidar. Measurements of laser radiation Rayleigh backscattered, or Raman scattered, by atmospheric air molecules can be used to determine the relative air density profile and subsequently the temperature profile if it is assumed that the atmosphere is in hydrostatic equilibrium and follows the ideal gas law. The high vertical and spatial resolution make the lidar a well adapted instrument for the study of many middle atmospheric processes and phenomena as well as for the evaluation and validation of temperature measurements from satellites, such as the Upper Atmosphere Research Satellite (UARS). In the Network for Detection of Stratospheric Change (NDSC) lidar is the core instrument for measuring middle atmosphere temperature profiles. Using the best lidar analysis algorithm possible is therefore of crucial importance. In this work, the JPL and CNRS/SA lidar analysis software were evaluated. The results of this evaluation allowed the programs to be corrected and optimized and new production software versions were produced. First, a brief description of the lidar technique and the method used to simulate lidar raw-data profiles from a given temperature profile is presented. Evaluation and optimization of the JPL and CNRS/SA algorithms are then discussed.
    Keywords: Computer Programming and Software
    Type: Nineteenth International Laser Radar Conference; 481-484; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: The temperature structure of the middle atmosphere has been studied for several decades using a variety of techniques. However, temperature profiles derived from lidar measurements can provide improved vertical resolution and accuracy. Lidars can also provide long-term data series relatively absent of instrumental drift, and integration of the measurements over several hours removes most of the gravity wave-like short-scale disturbances. This paper describes a seasonal climatology of the middle atmosphere temperature derived from lidar measurements obtained at several mid- and low-latitude locations. Results from the following lidars, which have all obtained a long-term measurement record, were used in this study: the two Rayleigh lidars of the Service d'Aeronomie du CNRS, France, located at the Observatoire de Haute Provence (OHP, 44.0 deg N) and at the Centre d'Essais des Landes (CEL, 44.0 deg N), the two Rayleigh/Raman lidars of the Jet Propulsion Laboratory, USA, located at Table Mountain, California (TMF, 34.4 deg N) and at Mauna Loa, Hawaii (MLO, 19.5 deg N), and the Colorado State University, USA, sodium lidar located at Fort Collins, Colorado (CSU, 40.6 deg N). The overall data set extends from 1978 to 1997 with different periods of measurements depending on the instrument. Three of the instruments are located at primary or complementary stations (OHP, TMF, MLO) within the Network for Detection of Stratospheric Change (NDSC). Several aspects of the temperature climatology obtained by lidar in the middle atmosphere are presented, including the climatological temperature average through the year; the annual and semi-annual components, and the differences compared to the CIRA-86 climatological model.
    Keywords: Environment Pollution
    Type: Nineteenth International Laser Radar Conference; 339-342; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Ozone (O3) is a toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address the limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME (Global Ozone Monitoring Experiment), GOME-2, and OMI (Ozone Monitoring Instrument). This algorithm is suggested to use a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB-Clim) O3 climatology). This study evaluates the TB-Clim dataset and model simulated O3 profiles, which could potentially serve as a priori O3 profile information in TEMPO retrievals, from near-real-time data assimilation model products (NASA GMAO's (Global Modeling and Assimilation Office) operational GEOS-5 (Goddard Earth Observing System, Version 5) FP (Forecast Products) model and reanalysis data from MERRA2 (Modern-Era Retrospective analysis for Research and Applications, Version 2)) and a full chemical transport model (CTM), GEOS-Chem. In this study, vertical profile products are evaluated with surface (0-2 kilometers) and tropospheric (0-10 kilometers) TOLNet (Tropospheric Ozone Lidar Network) observations and the theoretical impact of individual a priori profile sources on the accuracy of TEMPO O3 retrievals in the troposphere and at the surface are presented. Results indicate that while the TB-Clim climatological dataset can replicate seasonally-averaged tropospheric O3 profiles, model-simulated profiles from a full CTM resulted in more accurate tropospheric and surface-level O3 retrievals from TEMPO when compared to hourly and daily-averaged TOLNet observations. Furthermore, it is shown that when large surface O3 mixing ratios are observed, TEMPO retrieval values at the surface are most accurate when applying CTM a priori profile information compared to all other data products.
    Keywords: Environment Pollution
    Type: ARC-E-DAA-TN46979 , AGU Fall Meeting 2017; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-27
    Description: Ozone profile trends over the period 2000 to 2016 from several merged satellite ozone data sets and from ground-based data measured by four techniques at stations of the Network for the Detection of Atmospheric Composition Change indicate significant ozone increases in the upper stratosphere, between 35 and 48 kilometers altitude (5 and 1 hectopascals). Near 2 hectopascals (42 kilometers), ozone has been increasing by about 1.5 percent per decade in the tropics (20 degrees S to 20 degrees N), and by 2 to 2.5 percent per decade in the 35 to 60 degree latitude bands of both hemispheres. At levels below 35 kilometers (5 hectopascals), 2000 to 2016 ozone trends are smaller and not statistically significant. The observed trend profiles are consistent with expectations from chemistry climate model simulations. This study confirms positive trends of upper stratospheric ozone already reported, e.g., in the WMO/UNEP (World Meteorological Organization/United Nations Environmental Programme) Ozone Assessment 2014 or by Harris et al. (2015). Compared to those studies, three to four additional years of observations, updated and improved data sets with reduced drift, and the fact that nearly all individual data sets indicate ozone increase in the upper stratosphere, all give enhanced confidence. Uncertainties have been reduced, for example for the trend near 2 hectopascals in the 35 to 60 degree latitude bands from about plus or minus 5 percent (2 sigma) in Harris et al. (2015) to less than plus or minus 2 percent (2 sigma). Nevertheless, a thorough analysis of possible drifts and differences between various data sources is still required, as is a detailed attribution of the observed increases to declining ozone-depleting substances and to stratospheric cooling. Ongoing quality observations from multiple independent platforms are key for verifying that recovery of the ozone layer continues as expected.
    Keywords: Environment Pollution
    Type: GSFC-E-DAA-TN55484 , Atmospheric Chemistry and Physics (e-ISSN 1680-7324); 17; 17; 10675-100690|Quadrennial Ozone Symposium 2016; 4ý9 Sep. 2016; Edinburgh; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...