ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Carbon dioxide  (4)
  • Atlantic meridional overturning circulation  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C03019, doi:10.1029/2007JC004153.
    Description: Estimates of temporal trends in oceanic anthropogenic carbon dioxide (CO2) rely on the ability of empirical methods to remove the large natural variability of the ocean carbon system. A coupled carbon-climate model is used to evaluate these empirical methods. Both the ΔC* and multiple linear regression (MLR) techniques reproduce the predicted increase in dissolved inorganic carbon for the majority of the ocean and have similar average percent errors for decadal differences (24.1% and 25.5%, respectively). However, this study identifies several regions where these methods may introduce errors. Of particular note are mode and deep water formation regions, where changes in air-sea disequilibrium and structure in the MLR residuals introduce errors. These results have significant implications for decadal repeat hydrography programs, indicating the need for subannual sampling in certain regions of the oceans in order to better constrain the natural variability in the system and to robustly estimate the intrusion of anthropogenic CO2.
    Description: We would like to acknowledge funding from NSF (OCE02-23869), NCAR, the WHOI Ocean Climate Institute, a Linden Earth Systems Graduate Fellowship (MIT), and a National Defense Science and Engineering Graduate Fellowship. NCAR is sponsored by the National Science Foundation. R.W. is supported by the Office of Oceanic and Atmospheric Research at NOAA.
    Keywords: Carbon dioxide ; Ocean carbon sink ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 744–759, doi:10.1002/2014GB005079.
    Description: Improved constraints on carbon cycle responses to climate change are needed to inform mitigation policy, yet our understanding of how these responses may evolve after 2100 remains highly uncertain. Using the Community Earth System Model (v1.0), we quantified climate-carbon feedbacks from 1850 to 2300 for the Representative Concentration Pathway 8.5 and its extension. In three simulations, land and ocean biogeochemical processes experienced the same trajectory of increasing atmospheric CO2. Each simulation had a different degree of radiative coupling for CO2 and other greenhouse gases and aerosols, enabling diagnosis of feedbacks. In a fully coupled simulation, global mean surface air temperature increased by 9.3 K from 1850 to 2300, with 4.4 K of this warming occurring after 2100. Excluding CO2, warming from other greenhouse gases and aerosols was 1.6 K by 2300, near a 2 K target needed to avoid dangerous anthropogenic interference with the climate system. Ocean contributions to the climate-carbon feedback increased considerably over time and exceeded contributions from land after 2100. The sensitivity of ocean carbon to climate change was found to be proportional to changes in ocean heat content, as a consequence of this heat modifying transport pathways for anthropogenic CO2 inflow and solubility of dissolved inorganic carbon. By 2300, climate change reduced cumulative ocean uptake by 330 Pg C, from 1410 Pg C to 1080 Pg C. Land fluxes similarly diverged over time, with climate change reducing stocks by 232 Pg C. Regional influence of climate change on carbon stocks was largest in the North Atlantic Ocean and tropical forests of South America. Our analysis suggests that after 2100, oceans may become as important as terrestrial ecosystems in regulating the magnitude of the climate-carbon feedback.
    Description: We are grateful for support from the U.S. Department of Energy Office of Science and the National Science Foundation (NSF). J.T.R. and F.H. received support from the Regional and Global Climate Modeling Program in the Climate and Environmental Sciences Division of the Biological and Environmental Research (BER) Program in the U.S. Department of Energy Office of Science. J.T.R., K.L., E.M., W.F., J.K.M., S.C.D., and N.N.M. received funding from the NSF project “Collaborative Research: Improved Regional and Decadal Predictions of the Carbon Cycle“ (AGS-1048827, AGS-1021776, and AGS-1048890). The Community Earth System Modeling project receives support from both NSF and BER.
    Description: 2015-12-02
    Keywords: Atlantic meridional overturning circulation ; Net primary production ; Stratification ; Ecosystems ; Carbon-concentration feedback
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 4447–4475, doi:10.1175/JCLI-D-12-00589.1.
    Description: Changes in atmospheric CO2 variability during the twenty-first century may provide insight about ecosystem responses to climate change and have implications for the design of carbon monitoring programs. This paper describes changes in the three-dimensional structure of atmospheric CO2 for several representative concentration pathways (RCPs 4.5 and 8.5) using the Community Earth System Model–Biogeochemistry (CESM1-BGC). CO2 simulated for the historical period was first compared to surface, aircraft, and column observations. In a second step, the evolution of spatial and temporal gradients during the twenty-first century was examined. The mean annual cycle in atmospheric CO2 was underestimated for the historical period throughout the Northern Hemisphere, suggesting that the growing season net flux in the Community Land Model (the land component of CESM) was too weak. Consistent with weak summer drawdown in Northern Hemisphere high latitudes, simulated CO2 showed correspondingly weak north–south and vertical gradients during the summer. In the simulations of the twenty-first century, CESM predicted increases in the mean annual cycle of atmospheric CO2 and larger horizontal gradients. Not only did the mean north–south gradient increase due to fossil fuel emissions, but east–west contrasts in CO2 also strengthened because of changing patterns in fossil fuel emissions and terrestrial carbon exchange. In the RCP8.5 simulation, where CO2 increased to 1150 ppm by 2100, the CESM predicted increases in interannual variability in the Northern Hemisphere midlatitudes of up to 60% relative to present variability for time series filtered with a 2–10-yr bandpass. Such an increase in variability may impact detection of changing surface fluxes from atmospheric observations.
    Description: The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy. Computing resources were provided by the Climate Simulation Laboratory at NCAR’s Computational and Information Systems Laboratory (CISL), sponsored by the National Science Foundation and other agencies. G.K.A. acknowledges support of a NOAA Climate and Global Change postdoctoral fellowship. J.T.R., N.M.M., S.C.D., K.L., and J.K.M. acknowledge support of Collaborative Research: Improved Regional and Decadal Predictions of the Carbon Cycle (NSF AGS-1048827, AGS-1021776,AGS-1048890). TheHIPPO Programwas supported byNSF GrantsATM-0628575,ATM-0628519, and ATM-0628388 to Harvard University, University of California (San Diego), and by University Corporation for Atmospheric Research, University of Colorado/ CIRES, by the NCAR and by the NOAAEarth System Research Laboratory. Sunyoung Park, Greg Santoni, Eric Kort, and Jasna Pittman collected data during HIPPO. The ACME project was supported by the Office of Biological and Environmental Research of the U.S. Department of Energy under Contract DE-AC02- 05CH11231 as part of the Atmospheric Radiation Measurement Program (ARM), the ARM Aerial Facility, and the Terrestrial EcosystemScience Program. TCCON measurements at Eureka were made by the Canadian Network for Detection of Atmospheric Composition Change (CANDAC) with additional support from the Canadian Space Agency. The Lauder TCCON program was funded by the New Zealand Foundation for Research Science and Technology contracts CO1X0204, CO1X0703, and CO1X0406. Measurements at Darwin andWollongong were supported by Australian Research Council Grants DP0879468 and DP110103118 and were undertaken by David Griffith, Nicholas Deutscher, and Ronald Macatangay. We thank Pauli Heikkinen, Petteri Ahonen, and Esko Kyr€o of the Finnish Meteorological Institute for contributing the Sodankyl€a TCCON data. Measurements at Park Falls, Lamont, and Pasadena were supported byNASAGrant NNX11AG01G and the NASA Orbiting Carbon Observatory Program. Data at these sites were obtained by Geoff Toon, Jean- Francois Blavier, Coleen Roehl, and Debra Wunch.
    Description: 2014-01-01
    Keywords: Carbon cycle ; Carbon dioxide ; Aircraft observations ; In situ atmospheric observations ; Remote sensing ; Tracers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013]. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 6775–6800, doi:10.1175/JCLI-D-12-00184.1.
    Description: Ocean carbon uptake and storage simulated by the Community Earth System Model, version 1–Biogeochemistry [CESM1(BGC)], is described and compared to observations. Fully coupled and ocean-ice configurations are examined; both capture many aspects of the spatial structure and seasonality of surface carbon fields. Nearly ubiquitous negative biases in surface alkalinity result from the prescribed carbonate dissolution profile. The modeled sea–air CO2 fluxes match observationally based estimates over much of the ocean; significant deviations appear in the Southern Ocean. Surface ocean pCO2 is biased high in the subantarctic and low in the sea ice zone. Formation of the water masses dominating anthropogenic CO2 (Cant) uptake in the Southern Hemisphere is weak in the model, leading to significant negative biases in Cant and chlorofluorocarbon (CFC) storage at intermediate depths. Column inventories of Cant appear too high, by contrast, in the North Atlantic. In spite of the positive bias, this marks an improvement over prior versions of the model, which underestimated North Atlantic uptake. The change in behavior is attributable to a new parameterization of density-driven overflows. CESM1(BGC) provides a relatively robust representation of the ocean–carbon cycle response to climate variability. Statistical metrics of modeled interannual variability in sea–air CO2 fluxes compare reasonably well to observationally based estimates. The carbon cycle response to key modes of climate variability is basically similar in the coupled and forced ocean-ice models; however, the two differ in regional detail and in the strength of teleconnections.
    Description: The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy. SCD acknowledges support of Collaborative Research: Improved Regional and Decadal Predictions of the Carbon Cycle (NSFAGS- 1048827).
    Description: 2014-03-15
    Keywords: Carbon cycle ; Carbon dioxide ; Climate change ; Climate models ; Coupled models ; Oceanic chemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of National Academy of Sciences of the USA for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of the United States of America 102 (2005): 11201-11206, doi:10.1073/pnas.0504949102.
    Description: Climate change is expected to influence the capacities of the land and oceans to act as repositories for anthropogenic CO2 and hence provide a feedback to climate change. A series of experiments with the National Center for Atmospheric Research–Climate System Model 1 coupled carbon–climate model shows that carbon sink strengths vary with the rate of fossil fuel emissions, so that carbon storage capacities of the land and oceans decrease and climate warming accelerates with faster CO2 emissions. Furthermore, there is a positive feedback between the carbon and climate systems, so that climate warming acts to increase the airborne fraction of anthropogenic CO2 and amplify the climate change itself. Globally, the amplification is small at the end of the 21st century in this model because of its low transient climate response and the near-cancellation between large regional changes in the hydrologic and ecosystem responses. Analysis of our results in the context of comparable models suggests that destabilization of the tropical land sink is qualitatively robust, although its degree is uncertain.
    Description: This work was supported by National Science Foundation (NSF) Grant NSF ATM-9987457, National Aeronautics and Space Administration (NASA) EOS-IDS Grant NAG5-9514, NASA Carbon Cycle Program Grant NAG5-11200, the Laboratory Directed Research and Development Program of the Lawrence Berkeley National Laboratory, and the Ocean and Climate Change Institute of the Woods Hole Oceanographic Institution.
    Keywords: Carbon dioxide ; Climate change ; Land carbon sink ; Ocean carbon sink
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 533694 Bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...