ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of mathematical biology 28 (1990), S. 529-565 
    ISSN: 1432-1416
    Keywords: Space time ; Integral equation ; Dispersal ; Asymptotic velocity of propagation ; Approximation formulae ; Cumulant generating function ; Fisher/Skellam diffusion model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Notes: Abstract We consider the velocity with which an invading population spreads over space. For a general linear model, originally due to Diekmann and Thieme, it is shown that the asymptotic velocity of population expansion can be calculated if information is available on: (i) the net-reproduction, R o; i.e. the expected number of offspring produced by one individual throughout its life, and (ii) the (normalized) reproduction-and-dispersal kernel, β(a, χ − ξ); i.e. the density of newborns produced per unit of time at position χ by an individual of age a born at ξ By means of numerical examples we study the effect of the net-reproduction and the shape of the reproduction-and-dispersal kernel on the velocity of population expansion. The reproduction-and-dispersal kernel is difficult to measure in full. This leads us to derive approximation formulas in terms of easily measurable parameters. The relation between the velocity of population expansion calculated from the general model and that from the Fisher/Skellam diffusion model is discussed. As a final step we use the model to analyse some real-life examples, thus showing how it can be put to work.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...