ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astrophysics  (1)
Collection
Keywords
  • Astrophysics  (1)
Years
  • 1
    Publication Date: 2019-07-02
    Description: We derive direct-measurement gas-phase metallicities of 7.4 〈 12 + log(O/H) 〈 8.4 for 14 low-mass emission- line galaxies at 0.3 〈 z 〈 0.8 identied in the Faint Infrared Grism Survey. We use deep slitless G102 grism spectroscopy of the Hubble Ultra Deep Field, dispersing light from all objects in the eld at wavelengths between 0.85 and 1.15 m. We run an automatic search routine on these spectra to robustly identify 71 emission-line sources, using archival data from Very Large Telescope (VLT)/Multi-Unit Spectroscopic Explorer (MUSE) to measure additional lines and conrm redshifts. We identify 14 objects with 0.3 〈 z 〈 0.8 with measurable [O III] 4363 emission lines in matching VLT/MUSE spectra. For these galaxies, we derive direct electron-temperature gas-phase metallicities with a range of 7.4 〈 12 + log(O/H) 〈 8.4. With matching stellar masses in the range of 10(exp 7.9) Solar Mass 〈 M(sub *) 〈 10(exp 10.4) Solar Mass, we construct a massmetallicity (MZ) relation and nd that the relation is offset to lower metallicities compared to metallicities derived from alternative methods (e.g., R(sub 23), O3N2, N2O2) and continuum selected samples. Using star formation rates derived from the H emission line, we calculate our galaxies position on the Fundamental Metallicity Relation, where we also nd an offset toward lower metallicities. This demonstrates that this emission-line-selected sample probes objects of low stellar masses but even lower metallicities than many comparable surveys. We detect a trend suggesting galaxies with higher Specic Star Formation (SSFR) are more likely to have lower metallicity. This could be due to cold accretion of metal-poor gas that drives star formation, or could be because outows of metal-rich stellar winds and SNe ejecta are more common in galaxies with higher SSFR.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN68614 , Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 874; 2; 125
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...