ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astrophysics  (7)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-07-13
    Description: The present paper investigates the temperature structure of the X-ray emitting plasma in the core of the Perseus cluster using the 1.8-20.0 keV data obtained with the Soft X-ray Spectrometer (SXS) onboard the Hitomi Observatory. A series of four observations were carried out, with a total effective exposure time of 338 ks and covering a central region _ 7 in diameter. The SXS was operated with an energy resolution of _5 eV (full width at half maximum) at 5.9 keV. Not only fine structures of K-shell lines in He-like ions but also transitions from higher principal quantum numbers are clearly resolved from Si through Fe. This enables us to perform temperature diagnostics using the line ratios of Si, S, Ar, Ca, and Fe, and to provide the first direct measurement of the excitation temperature and ionization temperature in the Perseus cluster. The observed spectrum is roughly reproduced by a single temperature thermal plasma model in collisional ionization equilibrium, but detailed line ratio diagnostics reveal slight deviations from this approximation. In particular, the data exhibit an apparent trend of increasing ionization temperature with increasing atomic mass, as well as small differences between the ionization and excitation temperatures for Fe, the only element for which both temperatures can be measured. The best-fit two-temperature models suggest a combination of 3 and 5 keV gas, which is consistent with the idea that the observed small deviations from a single temperature approximation are due to the effects of projection of the known radial temperature gradient in the cluster core along the line of sight. Comparison with the Chandra/ACIS and the XMM-Newton/RGS results on the other hand suggests that additional lower-temperature components
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN54095 , Publications of the Astronomical Society of Japan (ISSN 0004-6264) (e-ISSN 2053-051X); 70; 2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We perform a joint analysis of X-ray and Sunyaev-Zel'dovich effect data using an analytic model that describes the gas properties of galaxy clusters. The joint analysis allows the measurement of the cluster gas mass fraction profile and Hubble constant independent of cosmological parameters. Weak cosmological priors are used to calculate the overdensity radius within which the gas mass fractions are reported. Such an analysis can provide direct constraints on the evolution of the cluster gas mass fraction with redshift. We validate the model and the joint analysis on high signal-to-noise data from the Chandra X-ray Observatory and the Sunyaev-Zel'dovich Array for two clusters, A2631 and A2204.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN9437 , The Astrophysical Journal; 748; 2; 113
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Supernova (SN) explosions enrich the intracluster medium (ICM) both by creating and dispersing metals. We introduce a method to measure the number of SNe and relative contribution of Type Ia supernovae (SNe Ia) and core-collapse supernovae (SNe cc) by directly fitting X-ray spectral observations. The method has been implemented as an XSPEC model called snapec. snapec utilizes a single-temperature thermal plasma code (apec) to model the spectral emission based on metal abundances calculated using the latest SN yields from SN Ia and SN cc explosion models. This approach provides a self-consistent single set of uncertainties on the total number of SN explosions and relative fraction of SN types in the ICM over the cluster lifetime by directly allowing these parameters to be determined by SN yields provided by simulations. We apply our approach to XMM-Newton European Photon Imaging Camera (EPIC), Reflection Grating Spectrometer (RGS), and 200 ks simulated Astro-H observations of a cooling flow cluster, A3112.We find that various sets of SN yields present in the literature produce an acceptable fit to the EPIC and RGS spectra of A3112. We infer that 30.3% plus or minus 5.4% to 37.1% plus or minus 7.1% of the total SN explosions are SNe Ia, and the total number of SN explosions required to create the observed metals is in the range of (1.06 plus or minus 0.34) x 10(exp 9), to (1.28 plus or minus 0.43) x 10(exp 9), fromsnapec fits to RGS spectra. These values may be compared to the enrichment expected based on well-established empirically measured SN rates per star formed. The proportions of SNe Ia and SNe cc inferred to have enriched the ICM in the inner 52 kiloparsecs of A3112 is consistent with these specific rates, if one applies a correction for the metals locked up in stars. At the same time, the inferred level of SN enrichment corresponds to a star-to-gas mass ratio that is several times greater than the 10% estimated globally for clusters in the A3112 mass range.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN9553 , The Astrophysical Journal; 753; 1; 54
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The recent discovery of the unidentified emission line at 3.5 keV in galaxies and clusters has attracted great interest from the community. As the origin of the line remains uncertain, we study the surface brightness distribution of the line in the Perseus cluster since that information can be used to identify its origin. We examine the flux distribution of the 3.5 keV line in the deep Suzaku observations of the Perseus cluster in detail. The 3.5 keV line is observed in three concentric annuli in the central observations, although the observations of the outskirts of the cluster did not reveal such a signal. We establish that these detections and the upper limits from the non-detections are consistent with a dark matter decay origin. However, absence of positive detection in the outskirts is also consistent with some unknown astrophysical origin of the line in the dense gas of the Perseus core, as well as with a dark matter origin with a steeper dependence on mass than the dark matter decay. We also comment on several recently published analyses of the 3.5 keV line.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN43711 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 829; 2; 124
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Hitomi (ASTRO-H) mission is the sixth Japanese X-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E greater than 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. After a successful launch on 2016 February 17, the spacecraft lost its function on 2016 March 26, but the commissioning phase for about a month provided valuable information on the on-board instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN43701 , Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray; 9905; 99050U|Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray; Jun 26, 2016; Edinburgh; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: We perform a detailed study of the stacked Suzaku observations of 47 galaxy clusters, spanning a redshift range of 0.01-0.45, to search for the unidentified 3.5 keV line. This sample provides an independent test for the previously detected line. We detect a 2sigma-significant spectral feature at 3.5 keV in the spectrum of the full sample. When the sample is divided into two subsamples (cool-core and non-cool core clusters), the cool-core subsample shows no statistically significant positive residuals at the line energy. A very weak (approx. 2sigma confidence) spectral feature at 3.5 keV is permitted by the data from the non-cool-core clusters sample. The upper limit on a neutrino decay mixing angle of sin(sup 2)(2theta) = 6.1 x 10(exp -11) from the full Suzaku sample is consistent with the previous detections in the stacked XMM-Newton sample of galaxy clusters (which had a higher statistical sensitivity to faint lines), M31, and Galactic center, at a 90% confidence level. However, the constraint from the present sample, which does not include the Perseus cluster, is in tension with previously reported line flux observed in the core of the Perseus cluster with XMM-Newton and Suzaku.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN41271 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 831; 1; 55
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: We present results of a search for the 3.5 keV emission line in our recent very long (approx. 1.4 Ms) XMM-Newton observation of the Draco dwarf spheroidal galaxy. The astrophysical X-ray emission from such dark matter-dominated galaxies is faint, thus they provide a test for the dark matter origin of the 3.5 keV line previously detected in other massive, but X-ray bright objects, such as galaxies and galaxy clusters. We do not detect a statistically significant emission line from Draco; this constrains the lifetime of a decaying dark matter particle to tau 〉(7-9) 10(exp 27) s at 95% CL (combining all three XMM-Newton cameras; the interval corresponds to the uncertainty of the dark matter column density in the direction of Draco). The PN camera, which has the highest sensitivity of the three, does show a positive spectral residual (above the carefully modeled continuum) at E = 3.54 +/- 0.06 keV with a 2.3(sigma) significance. The two MOS cameras show less-significant or no positive deviations, consistently within 1(sigma) with PN. Our Draco limit on tau is consistent with previous detections in the stacked galaxy clusters, M31 and the Galactic Centre within their 1 2(sigma) uncertainties, but is inconsistent with the high signal from the core of the Perseus cluster (which has itself been inconsistent with the rest of the detections). We conclude that this Draco observation does not exclude the dark matter interpretation of the 3.5 keV line in those objects.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN40984 , Monthly Notices of the Royal Astronomical Society (ISSN 0035-8711) (e-ISSN 1365-8711); 460; 2; 1390-1398
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...