ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, from z approx. 8 - 1.5. It will image 〉 250,000 distant galaxies using three separate cameras on the Hubble Space Tele8cope, from the mid-UV to near-IR, and will find and measure Type Ia supernovae beyond z 〉 1.5 to test their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10(exp 9) solar mass to z approx. 2, reaching the knee of the UV luminosity function of galaxies to z approx. 8. The survey covers approximately 800 square arc minutes and is divided into two parts. The CANDELS/Deep survey (5(sigma) point-source limit H =27.7mag) covers approx. 125 square arcminutes within GOODS-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (EGS, COSMOS, and UDS) and covers the full area to a 50(sigma) point-source limit of H ? or approx. = 27.0 mag. Together with the Hubble Ultradeep Fields, the strategy creates a three-tiered "wedding cake" approach that has proven efficient for extragalactic surveys. Data from the survey are non-proprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design.
    Keywords: Astrophysics
    Type: GSFC.ABS.5070.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We present preliminary results of a Hubble Space Telescope program to search for pulsating hot subdwarfs in the core of NGC 2808. These observations, obtained in March of 2013, were motivated by the recent discovery of such stars in the outskirts of Omega Cen. Both Omega Cen and NGC 2808 are massive globular clusters exhibiting complex stellar populations and large numbers of extreme horizontal branch stars. Our far-UV photometric monitoring of over 100 UV-bright stars has revealed at least six pulsating subdwarfs with periods ranging from 100 to 150 seconds. In the UV color-magnitude diagram of NGC 2808, all six of these stars lie immediately below the canonical horizontal branch, a region populated by the subluminous blue hook stars.Three of these six pulsators also have low-resolution far-UV spectroscopy that is sufficient to broadly constrain their atmospheric abundances and effective temperatures. Curiously, the spectroscopic and photometric data do not exhibit the uniformity one might expect from a well-defined instability strip.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN10951 , Meeting on Hot Subdwarf Stars and Related Objects; May 19, 2013 - May 24, 2013; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: We present an ultraviolet color-magnitude diagram (CMD) spanning the hot horizontal branch (HB), blue straggler, and white dwarf populations of the globular cluster NGC 2808. These data, obtained with the Space Telescope Imaging Spectrograph (STIS), demonstrate that NGC 2808 harbors a significant population of hot subluminous HB stars, an anomaly only previously reported for the globular cluster omega Cen. Our theoretical modeling indicates that the location of these subluminous stars in the CMD, as well as the high temperature gap along the HB of NGC 2808, can be explained if these stars underwent a late helium-core flash while descending the white dwarf cooling curve. We show that the convective zone produced by such a late helium flash will penetrate into the hydrogen envelope, thereby mixing hydrogen into the hot helium-burning interior, where it is rapidly consumed. This phenomenon is analogous to the "born again" scenario for producing hydrogen-deficient stars following a late helium-shell flash. The flash mixing of the envelope greatly enhances the envelope helium and carbon abundances that, in turn, leads to a discontinuous increase in the HB effective temperatures. We argue that the hot HB gap is associated with this theoretically predicted dichotomy in the HB properties. Moreover, the changes in the emergent spectral energy distribution caused by these abundance changes are primarily responsible for explaining the hot subluminous HB stars. Although further evidence is needed to confirm that a late helium-core flash can account for the subluminous HB stars and the hot HB gap, we demonstrate that an understanding of these stars requires the use of appropriate theoretical models for their evolution, atmospheres, and spectra.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We present the results of a Hubble Space Telescope program to search for pulsating hot subdwarfs in the core of NGC 2808. These observations were motivated by the recent discovery of such stars in the outskirts of Omega Cen. Both NGC 2808 and Cen are massive globular clusters exhibiting complex stellar populations and large numbers of extreme horizontal branch stars. Our far-UV photometric monitoring of over 100 hot evolved stars has revealed six pulsating subdwarfs with periods ranging from 85 to 149 s and UV amplitudes of 2.0%-6.8%. In the UV color-magnitude diagram of NGC 2808, all six of these stars lie immediately below the canonical horizontal branch, a region populated by the subluminous "blue-hook" stars. For three of these six pulsators, we also have low-resolution far-UV spectroscopy that is sufficient to broadly constrain their atmospheric abundances and effective temperatures. Curiously, and in contrast to the Cen pulsators, the NGC 2808 pulsators do not exhibit the spectroscopic or photometric uniformity one might expect from a well-defined instability strip, although they all fall within a narrow band (0.2 mag) of far-UV luminosity.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN14995 , The Astrophysical Journal Letters; 777; 2; L22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...