ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astrophysics  (1)
  • pyroxene  (1)
  • silicates  (1)
  • 1
    ISSN: 1573-0794
    Keywords: Comet ; infrared ; dust ; silicates ; olivine ; pyroxene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The NASA Ames HIFOGS spectrometer observed comet C/1995 O1 (Hale-Bopp) at epochs including 96 Oct 7–14 UT (2.8 AU), 97 Feb 14–15 UT (1.2 AU), 97 Apr 11 UT (0.93 AU), and 97 Jun 22, 25 UT (1.7 AU). The HIFOGS 7.5–13.5 μm spectrophotometry (R = 360 - 180) of the silicate feature at 2.8 AU is identical in shape to the ISO SWS spectra of comet Hale-Bopp (Crovisier et al., 1997); the strong 11.2 μm peak in the structured silicate feature is identified as olivine. Upon close passage to the sun, the HIFOGS spectra at 1.2 AU and 0.93 AU reveals strong peaks at 9.3 μm and 10.0 μm. The post-perihelion 10 μm silicate feature at 1.7 AU is weaker but has nearly the same shape as the pre-perihelion spectra at 1.2 AU, reverting to its pre-perihelion shape: there is no change in the dust chemistry by close passage to the sun. The appearance of the strong peaks at 9.3 μm and 10.0 μm at rh ≲ 1.7 AU is attributed to the rise in the contribution of pryoxenes (clino-pyroxene and orthopyroxene crystals) to the shape of the feature, and leads to the hypothesis that the pyroxenes are significantly cooler than the olivines. The pyroxenes are radiating on the Wien side of the blackbody at 2.8 AU and transition to the Rayleigh-Jeans tail of the blackbody upon closer approach to the Sun. Composite fits to the observed 10 μm silicate features using IDPs and laboratory minerals shows that a good empirical fit to the spectra is obtained when the pryoxenes are about 150 K cooler than the olivines. The pyroxenes, because they are cooler and contribute signficantly at perihelion, are more abundant than the olivines. The perihelion temperature of the pyroxenes implies that the pyroxenes are more Mg-rich than the other minerals including the olivines, amorphous olivines, and amorphous pyroxenes. The PUMA-1 flyby measurements of comet P/Halley also indicated an overabundance of Mg-rich pryoxenes compared to olivines. Comet Hale-Bopp's pyroxenes are similar to pyroxere IDPs from the ’Spray‘ class, known for their D-richness and their unaltered morphologies: Hale-Bopp's Mg-rich pyroxenes may be pristine relic ISM grains.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: We present 7.6 - 13.3 microns infrared (IR) spectrophotometry (R approx. = 180 - 350) of the 10 microns silicate emission from dust in the inner coma (i.e., within a diameter of 3in.) of comet C/1995 O1 (Hale-Bopp) at four temporal epochs from 1996 October through 1997 June during Hale-Bopp s approach to, arrival at, and recession from perihelion. The HIFOGS spectra at large heliocentric distances exhibit strong emission peaks from 9.9 - 10.1 microns and at 11.2 microns. The HIFOGS spectra of Hale-Bopp taken 1996 October 07 - 14 UT are identical in shape to the ISO SWS spectrum at 2.8 AU obtained on 1996 October 06 UT. Magnesium-rich olivine was unambiguously identified due to presence of the expected 11.2 microns peak along with the matching far-IR 18 microns, 23 microns, and 33 microns peaks in the ISO SWS spectrum. In contrast, to large heliocentric distances, we find that the silicate feature at small heliocentric distances (tau(sub lambda) less than or = 1.7 AU) exhibits strong peaks at 9.3 microns, 9.9 - 10.1 microns, and 11.2 microns, and weak at 10.5 microns and 11.8 microns. We will show that the dramatic increase of the 9.3 microns and 10.0 microns peaks close to perihelion leads to the hypothesis that there are two crystalline grain components with significantly different temperatures. The hotter mineral species (including olivines) radiate over a large range of heliocentric distances at detectable leve!s. The cooler mineral species (pyroxenes) radiate on the Wien side of the blackbody, too faint to detect in the mid-infrared spectra, until close to the sun when this species radiates on the Reyleigh-Jeans tail and becomes apparent. Decomposition of the observed silicate emission features into mineral components through comparison of the height and shape of the silicate feature ("Flux/cont") derived from the cometary spectra, to optical extinctions (Qext) derived from laboratory measurements of terrestrial silicate minerals and interplanetary dust particles (IDPs) is successful for a combination of warm grains (consisting of olivines, amorphous olivines, amorphous pyroxenes, and layer-lattice silicates) and cool grains (crystalline pyroxenes).
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...