ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astrophysics  (1)
  • Space Radiation; Life Sciences (General)  (1)
  • Statistics and Probability; Space Radiation  (1)
  • 1
    Publication Date: 2019-11-23
    Description: The high relative biological effectiveness (RBE) of high charged and energy (HZE) particles for cell death, DNA mutations and cancer remain based on experimental data. In this work, we propose that the existence of DNA repair domains is sufficient to predict both cell death and mutation frequencies for any LET by only taking into account experimental data from low-LET, offering one mechanism for RBE across LET. We hypothesize that whenever multiple DNA double-strand breaks (DSBs) are generated within the same DNA repair domain, DSBs are actively regrouped for more efficient repair [1]. This hypothesis has been supported by the low-LET sublinear dose response observed at doses greater than ~1Gy for 53BP1 radiation-induced foci (RIF) reflecting increasing DSB/RIF with dose [2]. Previously, we modeled radiation-induced cell death of human breast cells by first inferring the size of these domains from the dose dependence of low-LET RIF, and by associating a lethality factor to the number of pairs of DSBs in each RIF [1]. In this work, we first integrate the new NASA computer models RITCARD (Relativistic Ion Tracks, Chromosome Aberrations, Repair, and Damage) [3] and BDSTracks (Biological Damage by Stochastic Tracks) for a more accurate microdosimetry and a better model of the nuclear organization to predict the location of DSBs. A large array of particles and energy are simulated, covering more than three orders of magnitude for LET (~1-1000 keV/m). Next, we extend our previous model to predict mutation frequencies by assuming that clustered DSBs increase mutation probability, which is formalized by the mutation frequency being linearly dependent on both the number of DSBs and the number of pairs of DSBs inside individual RIF. Linear coefficients are estimated so that simulations predict accurately mutation frequencies observed in Chinese hamster cells exposed to low-LET. Keeping these coefficients unchanged, we then predict mutation frequencies induced by HZE by simulating DSBs and obtain RBEs for mutations and cell death following the expected experimental bell shape for LET dependence. We also observe an orientation effect that needs to be confirmed, showing different RBE depending on the angle of the HZE beam hitting the main axis of the cell.
    Keywords: Space Radiation; Life Sciences (General)
    Type: ARC-E-DAA-TN75112 , Annual Radiation Research Society Meeting; Nov 03, 2019 - Nov 06, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: A deterministic suite of radiation transport codes, developed at NASA Langley Research Center (LaRC), which describe the transport of electrons, photons, protons, and heavy ions in condensed media is used to simulate exposures from spectral distributions typical of electrons, protons and carbon-oxygen-sulfur (C-O-S) trapped heavy ions in the Jovian radiation environment. The particle transport suite consists of a coupled electron and photon deterministic transport algorithm (CEPTRN) and a coupled light particle and heavy ion deterministic transport algorithm (HZETRN). The primary purpose for the development of the transport suite is to provide a means for the spacecraft design community to rapidly perform numerous repetitive calculations essential for electron, proton and heavy ion radiation exposure assessments in complex space structures. In this paper, the radiation environment of the Galilean satellite Europa is used as a representative boundary condition to show the capabilities of the transport suite. While the transport suite can directly access the output electron spectra of the Jovian environment as generated by the Jet Propulsion Laboratory (JPL) Galileo Interim Radiation Electron (GIRE) model of 2003; for the sake of relevance to the upcoming Europa Jupiter System Mission (EJSM), the 105 days at Europa mission fluence energy spectra provided by JPL is used to produce the corresponding dose-depth curve in silicon behind an aluminum shield of 100 mils ( 0.7 g/sq cm). The transport suite can also accept ray-traced thickness files from a computer-aided design (CAD) package and calculate the total ionizing dose (TID) at a specific target point. In that regard, using a low-fidelity CAD model of the Galileo probe, the transport suite was verified by comparing with Monte Carlo (MC) simulations for orbits JOI--J35 of the Galileo extended mission (1996-2001). For the upcoming EJSM mission with a potential launch date of 2020, the transport suite is used to compute the traditional aluminum-silicon dose-depth calculation as a standard shield-target combination output, as well as the shielding response of high charge (Z) shields such as tantalum (Ta). Finally, a shield optimization algorithm is used to guide the instrument designer with the choice of graded-Z shield analysis.
    Keywords: Astrophysics
    Type: IEEEAP Paper 1113 , NF1676L-11018 , 2011 IEEE Aerospace Conference; Mar 05, 2011 - Mar 12, 2011; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: This paper develops techniques for predicting the uncertainty range of an output variable given input-output data. These models are called Interval Predictor Models (IPM) because they yield an interval valued function of the input. This paper develops IPMs having a radial basis structure. This structure enables the formal description of (i) the uncertainty in the models parameters, (ii) the predicted output interval, and (iii) the probability that a future observation would fall in such an interval. In contrast to other metamodeling techniques, this probabilistic certi cate of correctness does not require making any assumptions on the structure of the mechanism from which data are drawn. Optimization-based strategies for calculating IPMs having minimal spread while containing all the data are developed. Constraints for bounding the minimum interval spread over the continuum of inputs, regulating the IPMs variation/oscillation, and centering its spread about a target point, are used to prevent data over tting. Furthermore, we develop an approach for using expert opinion during extrapolation. This metamodeling technique is illustrated using a radiation shielding application for space exploration. In this application, we use IPMs to describe the error incurred in predicting the ux of particles resulting from the interaction between a high-energy incident beam and a target.
    Keywords: Statistics and Probability; Space Radiation
    Type: NF1676L-21631 , AIAA SciTech; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...