ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Lunar and Planetary Science and Exploration  (5)
  • Astrophysics  (2)
  • 1
    Publikationsdatum: 2011-08-24
    Beschreibung: We report data from the Cassini radio and plasma wave instrument during the approach and first orbit at Saturn. During the approach, radio emissions from Saturn showed that the radio rotation period is now 10 hours 45 minutes 45 k 36 seconds, about 6 minutes longer than measured by Voyager in 1980 to 1981. In addition, many intense impulsive radio signals were detected from Saturn lightning during the approach and first orbit. Some of these have been linked to storm systems observed by the Cassini imaging instrument. Within the magnetosphere, whistler-mode auroral hiss emissions were observed near the rings, suggesting that a strong electrodynamic interaction is occurring in or near the rings.
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Materialart: Science; Volume 307; 1255-1259
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2011-08-23
    Beschreibung: Radio emissions from Jupiter provided the first evidence that this giant planet has a strong magnetic field and a large magnetosphere. Jupiter also has polar aurorae, which are similar in many respects to Earth's aurorae. The radio emissions are believed to be generated along the high-latitude magnetic field lines by the same electrons that produce the aurorae, and both the radio emission in the hectometric frequency range and the aurorae vary considerably. The origin of the variability, however, has been poorly understood. Here we report simultaneous observations using the Cassini and Galileo spacecraft of hectometric radio emissions and extreme ultraviolet auroral emissions from Jupiter. Our results show that both of these emissions are triggered by interplanetary shocks propagating outward from the Sun. When such a shock arrives at Jupiter, it seems to cause a major compression and reconfiguration of the magnetosphere, which produces strong electric fields and therefore electron acceleration along the auroral field lines, similar to the processes that occur during geomagnetic storms at the Earth.
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Materialart: Letters to Nature; Volume 415; 985-987
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-10-02
    Beschreibung: Results are presented from the Cassini radio and plasma wave instrument during the approach and first few orbits around Saturn. During the approach the intensity modulation of Saturn Kilometric Radiation (SKR) showed that the radio rotation period of Saturn has increased to 10 hr 45 min plus or minus 36 sec, about 6 min longer than measured by Voyager in 1980-81. Also, many intense impulsive radio signals called Saturn Electrostatic Discharges (SEDs) were detected from saturnian lightning, starting as far as 1.08 AU from Saturn, much farther than terrestrial lightning can be detected from Earth. Some of the SED episodes have been linked to cloud systems observed in Saturn s atmosphere by the Cassini imaging system. Within the magnetosphere plasma wave emissions have been used to construct an electron density profile through the inner region of the magnetosphere. With decreasing radial distance the electron density increases gradually to a peak of about 100 per cubic centimeter near the outer edge of the A ring, and then drops precipitously to values as low as .03 per cubic centimeter over the rings. Numerous nearly monochromatic whistler-mode emissions were observed as the spacecraft passed over the rings that are believed to be produced by meteoroid impacts on the rings. Whistlermode emissions, similar to terrestrial auroral hiss were also observed over the rings, indicating that an electrodynamic interaction, similar to auroral particle acceleration, may be occurring in or near the rings. During the Titan flybys Langmuir probe and plasma wave measurements provided observations of the density and temperature in Titan's ionosphere.
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Materialart: Lunar and Planetary Science XXXVI, Part 7; LPI-Contrib-1234-Pt-7
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-13
    Beschreibung: The Galileo spacecraft has made seven close flybys of Jupiter's moon Callisto. During the closest of these (C22), which approached to within 535 km of the surface, the plasma wave instrument detected a very clear upper hybrid emission as the spacecraft passed near the moon. The peak electron density indicated by the upper hybrid resonance emission was 400/cc, almost one-thousand times the, electron density in the magnetosphere of Jupiter at the orbit of Callisto. These observations indicate that Callisto is probably surrounded by a dense ionospheric-like plasma.
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Materialart: Paper 2000GL003751 , Geophysical Research Letters (ISSN 0094-8276); 27; 13; 1867-1870
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-07-13
    Beschreibung: We report on a set of clear and abrupt decreases in the high-frequency boundary of whistlerode emissions detected by Cassini at high latitudes (about 40) during the low-altitude proximal flybys f Saturn . These abrupt decreases or dropouts have start and stop locations that correspond to L shells at the dges of the A and B rings. Langmuir probe measurements can confirm, in some cases, that the abrupt decrease in the high-frequency whistler mode boundary is associated with a corresponding abrupt electron density dropout over evacuated field lines connected to the A and B rings. Wideband data also reveal electron plasma oscillations and whistler mode cutoffs consistent with a low-density plasma in the region. he observation of the electron density dropout along ring-connecting field lines suggests that strong ambipolar forces are operating, drawing cold ionospheric ions outward to fill the flux tubes. There is an analog with the refilling of flux tubes in the terrestrial plasmasphere. We suggest that the ring-connected electron density dropouts observed between 1.1 and 1.3 R(sub s) are connected to the low-density ring plasma cavity observed overtop the A and B rings during the 2004 Saturn orbital insertion pass.
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Materialart: GSFC-E-DAA-TN63121 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 45; 16; 8104-8110
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-07-13
    Beschreibung: The Galileo spacecraft has executed nine close flybys of Jupiter's moon Europa for which plasma wave observations were obtained. This paper presents an analysis of the observations from these flybys taking into consideration the variable geometry of the trajectories in an attempt to characterize the general plasma-wave environment associated with the interaction of the Jovian magnetosphere with the moon. A wide variety of plasma-wave phenomena are found to be associated with this interaction. While there are apparently temporal variations which complicate the analysis, a crude model of the distribution of these phenomena around Europa is derived. Primarily on the upstream side of Europa, and working inward to the moon, electron-cyclotron harmonics are first observed, followed by a region within about two Europa radii of the moon with whistler-mode hiss or chorus, and culminating in a region closest to the moon where a band at the upper hybrid resonance frequency is sometimes enhanced over its ambient intensity. The wake region is approximately two Europa radii across and comprises a broadband, highly variable, and bursty electrostatic phenomenon. Upon closer inspection, these bursty emissions appear as solitary structures similar to those in Earth's auroral zone and plasma sheet boundary layer. In addition to the survey of wave phenomena in the vicinity of Europa, we provide density profiles derived primarily from the upper hybrid resonance frequency which is readily apparent throughout most of each of the flybys. Finally, we suggest that the whistler mode, electron cyclotron harmonic, and upper hybrid resonance emissions are driven by some combination of factors including variations in the magnetic field near Europa and the loss and production of plasma at Europa as a result of the interaction of the Jovian magnetosphere with the moon. By analogy with studies of the ion and electron holes and broadband electrostatic noise at Earth and Jupiter, we argue that the electrostatic solitary structures in the wake are associated with currents and beams coupling Europa to Jupiter's ionosphere.
    Schlagwort(e): Astrophysics
    Materialart: Planetary and Space Science (ISSN 0032-0633); 49; 345-363
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-07-13
    Beschreibung: This paper presents an overview of electron densities obtained near Io from the Galileo plasma wave instrument during the first four flybys of Io. These flybys were Io, which was a downstream wake pass that occurred on December 7, 1995; I24, which was an upstream pass that occurred on October 11, 1999; I25, which was a south polar pass that occurred on November 26, 1999; and I27, which was an upstream pass that occurred on February 22, 2000. Two methods were used to measure the electron density. The first was based on the frequency of upper hybrid resonance emissions, and the second was based on the low-frequency cutoff of electromagnetic radiation at the electron plasma frequency. For three of the flybys, Io, I25, and I27, large density enhancements were observed near the closest approach to Io. The peak electron densities ranged from 2.1 to 6.8 x 10(exp 4) per cubic centimeters. These densities are consistent with previous radio occultation measurements of Io's ionosphere. No density enhancement was observed during the I24 flyby, most likely because the spacecraft trajectory passed too far upstream to penetrate Io's ionosphere. During two of the flybys, I25 and I27, abrupt step-like changes were observed at the outer boundaries of the region of enhanced electron density. Comparisons with magnetic field models and energetic particle measurements show that the abrupt density steps occur as the spacecraft penetrated the boundary of the Io flux tube, with the region of high plasma density on the inside of the flux tube. Most likely the enhanced electron density within the Io flux tube is associated with magnetic field lines that are frozen to Io by the high conductivity of Io's atmosphere, thereby enhancing the escape of plasma along the magnetic field lines that pass through Io's ionosphere.
    Schlagwort(e): Astrophysics
    Materialart: Paper-2000JA002509 , Journal of Geophysical Research (ISSN 0148-0227); 106; A11; 26,225-26,232
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...