ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (6)
  • Astrophysics  (5)
  • SPACE VEHICLES  (5)
  • 11
    Publication Date: 2019-07-17
    Description: The electron density distribution in the ionosphere of nonmagnetic (or weakly magnetized) planet depends not only on the solar ultraviolet intensity, but also on the nature of the SW interaction with this planet. Two scenarios previously have been developed based on the observations of the bow shock crossings and on the electron density distribution within the ionosphere. According to one of them Mars has an intrinsic magnetosphere produced by a dipole magnetic field and the Martian ionosphere is protected from the SW flow except during "overpressure conditions, when the planetary magnetic field can not balance the SW dynamic pressure. In the second scenario the Martian intrinsic magnetic dipole field is so weak that Mars has mainly an induced magnetosphere and a Venus-like SW/ionosphere interaction. Today the possible existence of a sufficiently strong global magnetic field that participates in the SW/Mars interaction can no longer be supported. The results obtained by the Mars-Global-Surveyor (MGS) space-craft show the existence of highly variable, but also very localized magnetic fields of crustal origin at Mars as high as 400-1500 nT. The absence of the large-scale global magnetic field at Mars makes it similar to Venus, except for possible effects of the magnetic anomalies associated with the remnant crustal magnetization. However the previous results on the Martian ionosphere obtained mainly by the radio occultation methods show that there appears to be a permanent existence of a global horizontal magnetic field in the Martian ionosphere. Moreover the global induced magnetic field in the Venus ionosphere is not typical at the solar zenith angles explored by the radio occultation methods. Additional information is contained in the original extended abstract.
    Keywords: Lunar and Planetary Science and Exploration
    Type: The Fifth International Conference on Mars; LPI-Contrib-972
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Lunar Explorer 35 measurements of solar wind, interplanetary and lunar magnetic fields, cosmic dust, energetic particles, and electromagnetic properties of lunar surface
    Keywords: SPACE VEHICLES
    Type: NASA-TM-X-63225 , X-616-68-166 , COSPAR; May 16, 1968; TOKYO
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-18
    Description: MGS Electron Reflectometer data are used to probe the shape and variability of Mars ionosphere and to identify weak crustal magnetic fields within the Hellas basin. Additional information is contained in the original extended abstract.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIII; LPI-Contrib-1109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: The major features of the profile of 〉70 MeV/nuc cosmic ray intensity (CRI) observed by Voyager 1 (V1) in the heliosheath from 2005.8 - 2010.24 are described by the empirical "CR-B" relation as the cumulative effect of variations of the magnetic field strength B. The CRI profile observed by Voyager 2 (V2) from 2008.60 to 2010.28 in the heliosheath is also described by the CR-B relation. On a smaller scale, of the order of a hundred days, a sequence of 3 CRI decreases observed by V1 during 2006 was interpreted as the effect of a propagating interplanetary shock first interacting with the termination shock, then moving past V1, and finally reflecting from the heliopause and propagating back to V1. Our observations show that the second CRI decrease in this sequence began during the passage of a "Global Merged Interaction Region" (GMIR), approx. 40 days after the arrival of the GMIR and its possible shock. The first and third CRI decreases in the sequence were associated with local enhancements of B. The magnetic field observations associated with the second sequence of 3 cosmic ray intensity decreases observed by V1 in 2007/2008 are more difficult to reconcile with the scenario of Webber et al. and the CR-B relation. The discrepancy might indicate the importance of latitudinal effects.
    Keywords: Astrophysics
    Type: GSFC.JA.00182.2012 , Journal of Geophysical Research: Space Physics; 116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: This paper describes observations of daily averages of the magnetic field strength B and the magnetic polarity measured by Voyager 1 (V1) in the heliosheath during 2009 between 108.5 and 112.1 AU and at heliographic latitude 34. . 4. A negative magnetic polarity sector was observed during 2009 DOY 43.255. A positive polarity sector was observed during 2009 DOY 256.365. We offer the hypothesis that the existence of the two sectors is the result of the displacement of the wavy heliospheric current sheet to the position of V1 as a result of northward flow in the heliosheath. The large size of the sectors is caused by the slow radial motion of the flow observed by V1 in the heliosheath. The distribution of B during 2009 was lognormal, in contrast to the Gaussian distributions observed by V1 in the heliosheath prior to 2009. The large-scale fluctuations of B, described by the distribution of increments of daily averages of B, have a Tsallis distribution with q = 1.6. The large-scale fluctuations of B observed by V1 during 2009 have a multifractal spectrum with the same parameters that V1 observed during 2005 close to the termination shock at 94 AU. These results suggest that the large-scale magnetic fluctuations of B are in a metastable equilibrium state in the heliosheath between 94 AU and 112.1 AU.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; 725; 1; 1306-1316
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: This paper describes the multi-scale structure of the compressible "turbulence" observed by Voyager 2 in the heliosheath behind the termination shock from 2007 DOY 245.0-300.8 and in a unipolar region from 2008 DOY 2.9-75.6. The magnetic field strength is highly variable on scales from 48 s to several hours in both intervals. The amplitudes of the fluctuations were greater in the post-TS region than in the unipolar region. The multiscale structure of the increments of B is described by the q-Gaussian distribution of nonextensive statistical mechanics on all scales from 48 s to 3.4 hr in the unipolar region and 6.8 hr in the post-TS region, respectively. The amplitudes of the fluctuations of increments of B are larger in the post-TS region than in the unipolar region at all scales. Time series of the magnitude and direction of B show that the fluctuations are highly compressive. The small-scale fluctuations are a mixture of coherent structures (semi-deterministic structures) and random structures, which vary significantly from day to day
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...