ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Keywords: LASERS AND MASERS
    Type: NASA, Washington Upper Atmosphere Res. Program; p 40
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-17
    Description: Absolute line-center frequencies for eleven lines of ammonia in near coincidence with CO2-laser transitions have been determined to accuracies of + or -3 MHz by infrared heterodyne detection. These results were obtained by heterodyning a blackbody with a stable grating-tuned CO2 gas laser. A discussion of the apparatus and method of calculation, including error analysis, is presented. With these accurately determined line-center positions, the ammonia molecule will be a useful secondary-frequency standard for diode-laser spectroscopy in the 11-micron wavelength region.
    Keywords: LASERS AND MASERS
    Type: Optics Letters; 1; Sept
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-07
    Description: The optical design considerations for optimization of sensitivity, tunability, and versatility of an infrared heterodyne spectrometer are discussed using the GSFC CO2 laser heterodyne spectrometer optical front end as an example. Problems related to the coherent nature of the laser local oscillator beam (e.g., interference effects at edges of optical elements and at the beam combining beamsplitter) are described and proper beamsplitter design discussed. Optimum matching to the telescope is discussed. The severe effects of large central obscuration on the coherent telescope efficiency are described and steps to partially recover the lost system sensitivity are proposed. Measurements made with the GSFC 48 inch telescope (linear obscuration rate = 0.5) and the KPNO McMathe telescope (no obscuration) are given as examples.
    Keywords: LASERS AND MASERS
    Type: NASA. Langley Res. Center Heterodyne Systems and Technol., Pt. 2; p 365-372
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: Several types of spectrometers developed for radio astronomy receivers which utilize RF filters, multiple oscillators and mixers, digital autocorrelators and acoustic/optic devices are considered. The RF spectrometer developed at GSFC to provide wide bandwidths (greater than 1 GHz) as well as high resolution (5MHz) is described. The 128 channel filter bank is divided into high and low resolution sections. The high resolution section is tunable by providing a second mixer ahead of the filter bank. This is necessary because infrared receivers which use gas lasers as local oscillators are only tunable to specific laser frequencies. To compensate for astronomical Doppler shifts and molecule frequency differences a second local oscillator and mixer is needed. A diagram of the RF section of the filter bank is shown. The RF spectrometer is shown to be the best means of achieving ultra-wide bandwidths for infrared heterodyne receivers. For high resolution with a large number of channels, the acousto/optical spectrometer is the principle instrument, particularly for balloon or space flight applications.
    Keywords: LASERS AND MASERS
    Type: NASA. Langley Res. Center Heterodyne Systems and Technol., Pt. 2 p373-383 (SEE N80-29672 20-36)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-06-07
    Description: A diode laser based IR heterodyne spectrometer for laboratory and field use was developed for high efficiency operation between 7.5 and 8.5 microns. The local oscillator is a PbSSe tunable diode laser kept continuously at operating temperatures of 12-60 K using a closed cycle cooler. The laser output frequency is controlled and stabilized using a high precision diode current supply, constant temperature controller, and a shock isolator mounted between the refrigerator cold tip and the diode mount. Single laser modes are selected by a grating placed in the local oscillator beam. The system employs reflecting optics throughout to minimize losses from internal reflection and absorption, and to eliminate chromatic effects. Spectral analysis of the diode laser output between 0 and 1 GHz reveals excess noise at many diode current settings, which limits the infrared spectral regions over which useful heterodyne operation can be achieved. System performance has been studied by making heterodyne measurements of etalon fringes and several Freon 13 (CF3Cl) absorption lines against a laboratory blackbody source. Preliminary field tests have also been performed using the Sun as a source.
    Keywords: LASERS AND MASERS
    Type: NASA. Langley Res. Center Heterodyne Systems and Technol., Pt. 1 p199-208 (SEE N80-29652 20-36)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Methanol (CH3OH) radiates efficiently at infrared wavelengths, dominating the C-H stretching region in comets, yet inadequate quantum-mechanical models have imposed limits on the practical use of its emission spectra. Accordingly, we constructed a new line-by-line model for the 3 fundamental band of methanol at 2844 / cm (3.52 micron) and applied it to interpret cometary fluorescence spectra. The new model permits accurate synthesis of line-by-line spectra for a wide range of rotational temperatures, ranging from 10 K to more than 400 K.We validated the model by comparing simulations of CH3OH fluorescent emission with measured spectra of three comets (C/2001 A2 LINEAR, C/2004 Q2 Machholz and 8P/Tuttle) acquired with high-resolution infrared spectrometers at high-altitude sites. The new model accurately describes the complex emission spectrum of the nu3 band, providing distinct rotational temperatures and production rates at greatly improved confidence levels compared with results derived from earlier fluorescence models. The new model reconciles production rates measured at infrared and radio wavelengths in C/2001 A2 (LINEAR). Methanol can now be quantified with unprecedented precision and accuracy in astrophysical sources through high-dispersion spectroscopy at infrared wavelengths
    Keywords: Astrophysics
    Type: GSFC.CPR.01134.2012 , The Astrophysical Journal; 747; 1; 37
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: It is relatively easy to identify the reservoir from which a given comet was ejected. But dynamical models demonstrate that the main cometary reservoirs (Kuiper Belt, Oort Cloud) each contain icy bodies that formed in a range of environments in the protoplanetary disk, and the Oort Cloud may even contain bodies that formed in disks of sibling stars in the Sun s birth cluster. The cometary nucleus contains clues to the formative region(s) of its individual components. The composition of ices and rocky grains reflect a range of processes experienced by material while on the journey from the natal interstellar cloud core to the cometary nucleus. For that reason, emphasis is placed on classifying comets according to their native ices and dust (rather than orbital dynamics). Mumma & Charnley [1] reviewed the current status of taxonomies for comets and relation to their natal heritage.
    Keywords: Astrophysics
    Type: GSFC.CPR.6307.2012 , Asteroids, Comets and Meteors 2012; May 16, 2012 - May 20, 2012; Niigata; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: For many years we have been developing the ability, through high-resolution spectroscopy targeting ro-vibrational emission in the approximately 3 - 5 micrometer region, to quantify a suite of (approximately 10) parent volatiles in comets using quantum mechanical fluorescence models. Our efforts are ongoing and our latest includes methanol (CH3OH). This is unique among traditionally targeted species in having lacked sufficiently robust models for its symmetric (v(sub 3) band) and asymmetric (v(sub 2) and v(sub 9) bands) C-H3 stretching modes, required to provide accurate predicted intensities for individual spectral lines and hence rotational temperatures and production rates. This has provided the driver for undertaking a detailed empirical study of line intensities, and has led to substantial progress regarding our ability to interpret CH3OH in comets. The present study concentrates on the spectral region from approximately 2970 - 3010 per centimeter (3.367 - 3.322 micrometer), which is dominated by emission in the (v(sub 7) band of C2H6 and the v(sub 2) band of CH3OH, with minor contributions from CH3OH (v(sub 9) band), CH4 (v(sub 3)), and OH prompt emissions (v(sub 1) and v(sub 2)- v(sub 1)). Based on laboratory jet-cooled spectra (at a rotational temperature near 20 K)[1], we incorporated approximately 100 lines of the CH3OH v(sub 2) band, having known frequencies and lower state rotational energies, into our model. Line intensities were determined through comparison with several comets we observed with NIRSPEC at Keck 2, after removal of continuum and additional molecular emissions and correcting for atmospheric extinction. In addition to the above spectral region, NIRSPEC allows simultaneous sampling of the CH3OH v(sub 3) band (centered at 2844 per centimeter, or 3.516 micrometers and several hot bands of H2O in the approximately 2.85 - 2.9 micrometer region, at a nominal spectral resolving power of approximately 25,000 [2]. Empirical g-factors for v(sub 2) lines were based on the production rate as determined from the v(sub 3) Q-branch intensity; application to comets spanning a range of rotational temperatures (approximately 50 - 90 K) will be reported. This work represents an extension of that presented for comet 21P/Giacobini-Zinner at the 2010 Division for Planetary Sciences meeting [3]. Our empirical study also allows for quantifying CH3OH in comets using IR spectrometers for which the v(sub 3) and v(sub 2) bands are not sampled simultaneously, for example CSHELL/NASA IRTF or CRIRES/VLT.
    Keywords: Astrophysics
    Type: GSFC.ABS.4990.2011 , EPSC-DPS Joint Meeting 2011; Oct 01, 2011 - Oct 07, 2011; Nantes; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-24
    Description: We quantified primary volatiles in comet C/2009 Pl (Garradd) through pre- and post-perihelion observations acquired during its apparition in 2011-12 [1,2,3]. Detected volatiles include H2O, CO, CH4, C2H2, C2H6, HCN, NH3, H2CO, and CH3OH. We present production rates and chemical abundance ratios (relative to water) for all species, and I-D spatial profiles for multiple primary volatiles. We discuss these findings in the context of an emerging taxonomy based on primary volatiles in comets [4]. We used three spectrometer/telescope combinations. On UT 20ll August 7 (Rh 2.4 AU) and September 17-21 (Rh 2.0 AU), we used CRIRES at ESO's Very Large Telescope (VLT) [1]. On September 8 and 9 (Rh 2.1 AU), we used NIRSPEC at Keck-2 and CSHELL at IRTF [2]. Using NIRSPEC on October 13 and 2012 January 08 (Rh 1.83 and 1.57 AU, respectively), we detected nine primary volatiles pre-perihelion, and six post-perihelion [3]. CO was enriched in Garradd while C2H2 was strongly depleted. C2H6 and CH3OH displayed abundances close to those measured for the majority of Oort cloud comets observed to date. The high fractional abundance of CO identifies comet C12009 P1 as a CO-rich comet. Spatial profiles revealed notable differences among individual primary species. Given the relatively large heliocentric distance of C/2009 Pl, we explored the effect of water not being fully sublimated within our field of view and we identi$, the "missing" water fraction needed to reconcile the retrieved abundance ratios with the mean values found for "organics-normal" comets.
    Keywords: Astrophysics
    Type: GSFC.ABS.6792.2012 , 44th Annual Meeting AAS Division of Planetary Sciences; Oct 14, 2012 - Oct 19, 2012; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Earth- and space-based observations provide synergistic information for space mission encounters by providing data over longer timescales. at different wavelengths and using techniques that are impossible with an in situ flyby. We report here such observations in support of the EPOXI spacecraft flyby of comet 103P (Hartley 2. The nucleus is small and dark, and exhibited a very rapidly changing rotation period. Prior to the onset of activity, the period was approximately 16.4 hr. Starting in 2010 August the period changed from 16.6 hr to near 19 hr in December. With respect to dust composition, most volatiles and carbon and nitrogen isotope ratios, the comet is similar to other Jupiter-family comets. What is unusual is the dominance of CO2-driven activity near perihelion, which likely persists out to aphelion. Near perihelion the comet nucleus was surrounded by a large halo of water-ice grains that contributed significantly to the total water production.
    Keywords: Astrophysics
    Type: GSFC.JA.6404.2012 , Astrophysical Journal Letters; 734; L1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...