ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astrophysics  (1)
  • Ecology  (1)
  • 1
    Publication Date: 2018-06-06
    Description: We have used the Spitzer satellite to monitor the laid-IR evolution of SN 1987A over a 5 year period spanning the epochs between days 6000 and 8000 since the explosion. The supernova (SN) has evolved into a supernova remnant (SNR) and its radiative output, is dominated by the interaction of the SN blast wave with the pre-existing equatorial ring (ER). The mid-IR spectrum is dominated by emission from approximately 180 K silicate dust, collisionally-heated by the hot X-ray emitting gas with a temperature and density of 5 x 10(exp 6) K and approximately 3 x 10(exp 4) per cubic centimeter, respectively. The mass of the radiating dust is approximately 1.2 x 10(exp -6) solar mass on day 7554, and scales linearly with IR flux. Comparison of the IR data with the soft X-ray flux derived from Chandra observations shows that the IR-to-X-ray flux ratio, IRX, is roughly constant with a value of 2.5. Gas-grain collisions therefore dominate the cooling of the shocked gas. The constancy of IRX is most consistent with the scenario that very little grain processing or gas cooling have occurred throughout this epoch. The shape of the dust spectrum remained unchanged during the observations while the total flux increased by a factor of approximately 5 with a time dependence of t(sup '0.87 plus or minus 0.20), t' being the time since the first encounter between the blast wave and the ER. These observations are consistent with the transitioning of the blast wave from free expansion to a Sedov phase as it propagates into the main body of the ER, as also suggested by X-ray observations. The constant spectral shape of they IR, emission provides strong constraints on the density and temperature of the shocked gas in which the interaction takes place. The IR spectra also suggest the presence of a secondary population of very small, hot (T greater than or equal to 350 K), featureless dust. If these grains spatially coexists with the silicates, then they must have shorter lifetimes. The data show slightly different rates of increase of their respective fluxes, lending some support to this hypothesis. However, the origin of this emission component and the exact nature of its relation to the silicate emission is still a major unsolved puzzle.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Natural History Museum, 2012. This article is posted here by permission of Taylor & Francis for reuse for non-commercial purposes only. The definitive version was published in Systematics and Biodiversity 10 (2012): 1-20, doi:10.1080/14772000.2012.665095.
    Description: The time is ripe for a comprehensive mission to explore and document Earth's species. This calls for a campaign to educate and inspire the next generation of professional and citizen species explorers, investments in cyber-infrastructure and collections to meet the unique needs of the producers and consumers of taxonomic information, and the formation and coordination of a multi-institutional, international, transdisciplinary community of researchers, scholars and engineers with the shared objective of creating a comprehensive inventory of species and detailed map of the biosphere. We conclude that an ambitious goal to describe 10 million species in less than 50 years is attainable based on the strength of 250 years of progress, worldwide collections, existing experts, technological innovation and collaborative teamwork. Existing digitization projects are overcoming obstacles of the past, facilitating collaboration and mobilizing literature, data, images and specimens through cyber technologies. Charting the biosphere is enormously complex, yet necessary expertise can be found through partnerships with engineers, information scientists, sociologists, ecologists, climate scientists, conservation biologists, industrial project managers and taxon specialists, from agrostologists to zoophytologists. Benefits to society of the proposed mission would be profound, immediate and enduring, from detection of early responses of flora and fauna to climate change to opening access to evolutionary designs for solutions to countless practical problems. The impacts on the biodiversity, environmental and evolutionary sciences would be transformative, from ecosystem models calibrated in detail to comprehensive understanding of the origin and evolution of life over its 3.8 billion year history. The resultant cyber-enabled taxonomy, or cybertaxonomy, would open access to biodiversity data to developing nations, assure access to reliable data about species, and change how scientists and citizens alike access, use and think about biological diversity information.
    Description: Funds for the ‘Sustain What?’ workshop were provided by Arizona State University (Office of the President, International Institute for Species Exploration and Global Institute of Sustainability) and a grant from the US National Science Foundation (DEB-1102500 to QDW). Further support was provided by the College of Liberal Arts and Sciences, Arizona State University and NSF (DEB-0316614 to SK).
    Keywords: Biodiversity ; Bioinformatics ; Biomimicry ; Biosphere ; Conservation ; Cyberinfrastructure ; Ecology ; Evolution ; International collaboration ; Organization of science ; Origins ; Species ; Sustainability ; Systematics ; Taxonomy ; Team work
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...