ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astronomy  (4)
Collection
Years
  • 1
    Publication Date: 2019-07-13
    Description: Debris disks, which are inferred from the observed infrared excess to be ensembles of dust, rocks. and probably planetesimals, arc common features of stellar systems. As the mechanisms of their fonnation and evolution are linked to those of planetary bodies, they provide valuable infonnation. The few well-resolved debris disks are even more valuable because they can serve as modelling benchmarks and help resolve degeneracies in modelling aspects such as typical grain sizes and distances. Here, we present an analysis of the HD 207129 debris disk, based on its well-covered spectral energy distribution and Herschel/PACS images obtained in the framework of the DUNES (DUst around NEarby Stars) programme. We use an empirical power-law approach to the distribution of dust and we then model the production and removal of dust by means of collisions, direct radiation pressure, and drag forces. The resulting best-fit model contains a total of nearly 10(sup -2) Earth masses in dust, with typical grain sizes in the planetesimal beh ranging from 4 to 7 micrometers. We constrain the dynamical excitation to be low, which results in very long collisional lifetimes and a drag that notably fills the inner gap, especially at 70 micrometers. The radial distribution stretches from well within 100 AU in an unusual, outward-riSing slope towards a rather sharp outer edge at about 170-190 AU. The inner edge is therefore smoother than that reported for Fomalhaut, but the contribution from the extended halo of barely bound grains is similarly small. Both slowly self-stirring and planetary perturbations could potentially have formed and shaped this disk.
    Keywords: Astronomy
    Type: GSFC.JA.7087.2012 , Astronomy and Astrophysics; 537; A110
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: We present Herschel PACS 100 and 160 micron observations of the solar-type stars alpha Men, HD 88230 and HD 210277, which form part of the FGK stars sample of the Herschel Open Time Key Programme (OTKP) DUNES (DUst around NEarby Stars). Our observations show small infrared excesses at 160 m for all three stars. HD 210277 also shows a small excess at 100 micron, while the 100 micron fluxes of alpha Men and HD 88230 agree with the stellar photospheric predictions. We attribute these infrared excesses to a new class of cold, faint debris discs. alpha Men and HD 88230 are spatially resolved in the PACS 160 m images, while HD 210277 is point-like at that wavelength. The projected linear sizes of the extended emission lie in the range from approx 115 to 〈= 250 AU. The estimated black body temperatures from the 100 and 160 micron fluxes are approx 〈 22 K, while the fractional luminosity of the cold dust is L(sub dust) / L(*) approx 10 (exp 6) close to the luminosity of the Solar-System's Kuiper belt. These debris discs are the coldest and faintest discs discovered so far around mature stars and cannot easily be explained by invoking "classical" debris disc models.
    Keywords: Astronomy
    Type: GSFC.JA.5908.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: We present Herschel PACS 100 and 160 micron observations of the solar-type stars alpha Men, HD 88230 and HD 210277, which form part of the FGK stars sample of the Herschel Open Time Key Programme (OTKP) DUNES (DUst around NEarby Stars). Our observations show small infrared excesses at 160 micron for all three stars. HD 210277 also shows a small excess at 100 micron. while the 100 micron fluxes of a Men and HD 88230 agree with the stellar photospheric predictions. We attribute these infrared excesses to a new class of cold, faint debris discs. alpha Men and HD 88230 are spatially resolved in the PACS 160 micron images, while HD 210277 is point-like at that wavelength. The projected linear sizes of the extended emission lie in the range from approximately 115 to 〈= 250 AU. The estimated black body temperatures from the 100 and 160 micron fluxes are approximately 〈 22 K, while the fractional luminosity of the cold dust is L(dust)/ L(star) approximates 10(exp -6), close to the luminosity of the Solar-System's Kuiper belt. These debris discs are the coldest and faintest discs discovered so far around mature stars and cannot easily be explained by invoking "classical" debris disc models.
    Keywords: Astronomy
    Type: GSFC.JA.5600.2011
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: Context. The existence of debris disks around old main sequence stars is usually explained by continuous replenishment of small dust grains through collisions from a reservoir of larger objects. Aims. We present photometric data of debris disks around HIP 103389 (HD199260), HIP 100350 (HN Peg, HD206860), and HIP 114948 (HD 219482), obtained in the context of our Herschel Open TIme Key Program DUNES (DUst around NEarby Stars). Methods. We used Herschel/PACS to detect the thermal emission of the three debris disks with a 30 sigma sensitivity of a few mJy at l00 micron and 160 micron. In addition, we obtained Herschel/PACS photometric data at 70 micron for HIP 103389. These observations are complemented by a large variety of optical to far-infrared photometric data. Two different approaches are applied to reduce the Herschel data to investigate the impact of data reduction on the photometry. We fit analytical models to the available spectral energy distribution (SED) data using the fitting method of simulated therma1 annealing as well as a classical grid search method. Results. The SEDs of the three disks potentially exhibit an unusually steep decrease at wavelengths 〉= 70 micron. We investigate the significance of the peculiar shape of these SEDs and the impact on models of the disks provided it is real. Using grain compositions that have been applied successfully for modeling of many other debris disks, our modeling reveals that such a steep decrease of the SEDs in the long wavelength regime is inconsistent with a power-law exponent of the grain size distribution -3.5 expected from a standard equilibrium collisional cascade. In contrast, a steep grain size distribution or, alternatively an upper grain size in the range of few tens of micrometers are implied. This suggests that a very distinct range of grain sizes would dominate the thermal. emission of such disks. However, we demonstrate that the understanding of the data of faint sources obtained with Herschel is still incomplete and that the significance of our results depends on the version of the data reduction pipeline used. Conclusions. A new mechanism to produce the dust in the presented debris disks, deviations from the conditions required for a standard equilibrium collisional cascade (grain size exponent of -3.5), and/or significantly different dust properties would be necessary to explain the potentially steep SED shape of the three debris disks presented.
    Keywords: Astronomy
    Type: GSFC.JA.00252.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...