ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: The Solar Wind Ion Composition Spectrometer (SWICS) onboard Ulysses allows determination of the elemental composition of the solar wind and the charge states of all major solar wind ion species. Ulysses left the ecliptic plane in early 1992, crossed the Sun's south polar region in late 1994 and made a fast approach back towards the ecliptic in the first half of 1995. Data from this period were investigated for long-term variations in the solar wind composition. At midlatitudes Ulysses encountered periodically the fast solar wind stream emerging from the south coronal hole. As a consequence, dramatic variations in the charge-states arise, between high charge-states dominating in the current sheet solar wind and low charge states in the coronal hole stream. However, the initial analysis indicates that from midlatitudes onwards, with Ulysses permanently immersed in the coronal hole stream, the charge state and elemental abundance ratios of the major solar wind ion species stayed essentially constant. This implies that the temperature profile in the coronal hole at solar wind source altitudes exhibit no variation with solar latitude. It confirms that the south coronal hole is essentially unstructured down to scale lengths of several degrees in solar latitude.
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 74; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Ion velocity distribution functions have been measured with high time resolution by the TAUS plasma instrument on the PHOBOS mission to Mars in 1989. The unambiguous separation of protons and alpha-particles by TAUS enabled us to study the nonthermal features of their distributions separately and to analyze the stability of the distributions against excitation of waves in the cyclotron-frequency domain. Typical nonthermal features include temperature anisotropies, with T(sub perpendicular) larger than T(sub parallel), and ion beam populations drifting along the local magnetic field direction. Also, distinctly non-gyrotropic alpha-particle velocity distributions were sometimes found. Non-gyrotropy strongly changes the wave dispersion and gives rise to new growing modes, related to the coupling of the standard wave modes existing in gyrotropic plasma. It is found that for the measured non-gyrotropic ion distributions the right-hand polarized wave can also be excited by a temperature anistropy instead of the usual beam drift.
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 74; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: One of the major goals of NASA's Solar Probe Plus (SPP) mission is to determine the mechanisms that accelerate and transport high-energy particles from the solar atmosphere out into the heliosphere. Processes such as coronal mass ejections and solar flares, which peak roughly every 11 years around solar maximum, release huge quantities of energized matter, magnetic fields and electromagnetic radiation into space. The high-energy particles, known as solar energetic particles or SEPs, present a serious radiation threat to human explorers living and working outside low-Earth orbit and to technological assets such as communications and scientific satellites in space. This talk describes the Integrated Science Investigation of the Sun (ISIS) - Energetic Particle Instrument suite. ISIS measures key properties such as intensities, energy spectra, composition, and angular distributions of the low-energy suprathermal source populations, as well as the more hazardous, higher energy particles ejected from the Sun. By making the first-ever direct measurements of the near-Sun regions where the acceleration takes place, ISIS will provide the critical measurements that, when integrated with other SPP instruments and with solar and interplanetary observations, will lead to a revolutionary new understanding of the Sun and major drivers of solar system space weather.
    Keywords: Solar Physics
    Type: GSFC.CPR.4541.2011 , 32nd International Cosmic Ray Conference (ICRC2011); Aug 11, 2011 - Aug 18, 2011; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: About 25 years ago, E. Parker suggested that, as a consequence of the inhomogeneous structure of the corona, the solar wind might consist of adjacent structures with different physical conditions. Since that suggestion was made, the solar wind plasma characteristics have been measured in situ through many experiments, but little has been done to check whether the solar wind shows any evidence for fine scale structures, and, in the affirmative, how far from the Sun these structures persist. A previous work on this subject, by Thieme, Marsch and Schwenn (1990), based on Helios data, lead these authors to claim that the solar wind, between 0.3 and 1 AU, is inhomogeneous on a scale consistent with the hypothesis that the plume-interplume plasmas, at those distances, still retain their identity. In this work we present preliminary results from an investigation of the solar wind fine structure from Ulysses high latitude observations. To this end, we have analyzed data over several months, during 1994, at times well after Ulysses's last encounter with the Heliospheric Current Sheet, when the spacecraft was at latitudes above 50 degrees. These data refer to high speed wind coming from southern polar coronal holes and are best suited for plume-interplume identification. We have performed a power spectra analysis of typical plasma parameters, to test whether the wind plasma consist of two distinct plasma populations. We also examined data to check whether there is any evidence for an horizontal pressure balance over the hypothesized distinct structures. Our results are discussed and compared with previous findings.
    Keywords: Solar Physics
    Type: ; 93
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: MESSENGER'S 14 January 2008 encounter with Mercury will provide the first new observations of the solar wind interaction with this planet since the Mariner 10 flybys that took place over 30 years ago. The closest approach distance for this first MESSENGER flyby is targeted for an altitude of 200 km as compared with the 707 km and 327 km attained by Mariner 10 on 29 March 1974 and 16 March 1975, respectively. The locations of the bow shock and magnetopause boundaries observed by MESSENGER will be examined and compared against those found in the earlier Mariner 10 measurements and the predictions of theoretical models and numerical simulations. The structure of the magnetopause will be investigated for the presence of flux transfer events or other evidence of magnetic reconnection as will the more general implications of these new MESSENGER bow shock and magnetopause observations for the global solar wind interaction with Mercury.
    Keywords: Astronomy
    Type: European Geophysical Union Conference; Apr 10, 2008 - Apr 19, 2008; Vienna; Austria
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA and suggests the need for quantitative results from laboratory simulations and molecular physic modeling in order to understand SHEA data from planetary missions. In the Appendix, referenced computer simulations using existing sputtering data are reviewed.
    Keywords: Astronomy
    Type: GSFC.JA.00152.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: Mean density and temperature gradients of solar wind protons and alpha-particles between 1 and 5.4 AU are established from SWICS/Ulysses observations. All parameters are classified in speed intervals. au order scheme giving us a natural extension of the Helios observations. which were usually classified according to speed of the wind. The radial gradients show a similar behaviour of both particle species, while the particles radially propagate and thereby cool off in the heliosphere. The slow solar wind is found, for protons as well as a particles. to expand adiabatically all the way out to 5.4 AU, while the fast wind evolves non-adiabatically and is heated by interplanetary sources. It, seems that the heating rate of the a-particles is larger than the heating rate of the protons. The ion temperature ratio and density ratio are determined. They do not indicate any radial dependence. The temperature ratio T(sub alpha)/T(sub p) is on average about 4. It has a maximum of 4.5 in the velocity interval where 400 km/s is less than v(sub p) is less than 500 km/s, while in slow wind with v(sub p) is less than 400 km/s it has a minimum value of 37. and for fast wind with v(sub p) is greater than 500 km/s it is 3.9. The density gradients shows compression effects resulting from fast wind overtaking the slow wind.
    Keywords: Solar Physics
    Type: ; 96
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...