ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astronomy  (2)
  • LUNAR AND PLANETARY EXPLORATION  (1)
  • SPACECRAFT INSTRUMENTATION  (1)
  • 1
    Publication Date: 2019-06-28
    Description: The RAPID spectrometer for the Cluster mission, an advanced particle detector for the analysis of suprathermal plasma distributions in the energy range from 20 to 400 keV and from 2 keV/nuc to 1500 keV for electrons and ions, respectively, is presented. Novel detector concepts in combination with pinhole acceptance permit the measurement of angular distributions over a range of 180 deg in polar angle for either species. The detection principle for the ionic component is based on a two dimensional analysis of a particle's velocity and energy. Electrons are identified by the well known energy range relationship. The detection techniques are described and selected areas in geospace are used to highlight the scientific objectives of this investigation.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: ESA, Cluster: Mission, Payload, and Supporting Activities; p 185-217
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: MESSENGER'S 14 January 2008 encounter with Mercury will provide the first new observations of the solar wind interaction with this planet since the Mariner 10 flybys that took place over 30 years ago. The closest approach distance for this first MESSENGER flyby is targeted for an altitude of 200 km as compared with the 707 km and 327 km attained by Mariner 10 on 29 March 1974 and 16 March 1975, respectively. The locations of the bow shock and magnetopause boundaries observed by MESSENGER will be examined and compared against those found in the earlier Mariner 10 measurements and the predictions of theoretical models and numerical simulations. The structure of the magnetopause will be investigated for the presence of flux transfer events or other evidence of magnetic reconnection as will the more general implications of these new MESSENGER bow shock and magnetopause observations for the global solar wind interaction with Mercury.
    Keywords: Astronomy
    Type: European Geophysical Union Conference; Apr 10, 2008 - Apr 19, 2008; Vienna; Austria
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA and suggests the need for quantitative results from laboratory simulations and molecular physic modeling in order to understand SHEA data from planetary missions. In the Appendix, referenced computer simulations using existing sputtering data are reviewed.
    Keywords: Astronomy
    Type: GSFC.JA.00152.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: The ion composition in the Jovian environment was investigated with the Solar Wind Ion Composition Spectrometer on board Ulysses. A hot tenuous plasma was observed throughout the outer and middle magnetosphere. In some regions two thermally different components were identified. Oxygen and sulfur ions with several different charge states, from the volcanic satellite Io, make the largest contribution to the mass density of the hot plasma, even at high latitude. Solar wind particles were observed in all regions investigated. Ions from Jupiter's ionosphere were abundant in the middle magnetosphere, particularly in the high-latitude region on the dusk side, which was traversed for the first time.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Science (ISSN 0036-8075); 257; 5076; 1535-153
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...