ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astronomy  (5)
  • LIFE SCIENCES (GENERAL)  (1)
  • SOLAR PHYSICS  (1)
  • 1
    Publication Date: 2011-08-19
    Description: The present biosphere is shielded from harmful solar near ultraviolet (UV) radiation by atmospheric ozone. It is suggested that elemental sulfur vapor could have played a similar role in an anoxic, ozone-free, primitive atmosphere. Sulfur vapor would have been produced photochemically from volcanogenic SO2 and H2S. It is composed of ring molecules, primarily S8, that absorb strongly throughout the near UV, yet are expected to be relatively stable against photolysis and chemical attack. It is also insoluble in water and would thus have been immune to rainout or surface deposition over the oceans. Since the concentration of S8 in the primitive atmosphere would have been limited by its saturation vapor pressure, surface temperatures of 45 C or higher, corresponding to carbon dioxide partial pressures exceeding 2 bars, are required to sustain an effective UV screen. A warm, sulfur-rich, primitive atmosphere is consistent with inferences drawn from molecular phylogeny, which suggest that some of the earliest organisms were thermophilic bacteria that metabolized elemental sulfur.
    Keywords: LIFE SCIENCES (GENERAL)
    Type: Origins of Life and Evolution of the Biosphere (ISSN 0169-6149); 19; 2, 19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: Astronomical observations of stars analogous to the sun are used to construct a tentative account of the evolution of solar UV luminosity. Evidence exists that the young sun was a much more powerful source of energetic particles and radiation than it is today, and while on the main sequence, solar activity has declined as an inverse power law of age as a consequence of angular momentum loss to the solar wind. Observations of pre-main sequence stars indicate that before the sun reached the main sequence, it may have emitted as much as ten thousand times the amount of ultraviolet radiation that it does today. The impact of the results on knowledge of photochemistry and escape of constituents of primordial planetary atmospheres is discussed.
    Keywords: SOLAR PHYSICS
    Type: Reviews of Geophysics and Space Physics; 20; May 1982
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: The past decade has seen significant progress on the direct detection and characterization of young, self-luminous giant planets at wide orbital separations from their host stars. Some of these planets show evidence for disequilibrium processes like transport-induced quenching in their atmospheres; photochemistry may also be important, despite the typically large orbital distances. Disequilibrium chemical processes such as these can alter the expected composition, spectral behavior, thermal structure, and cooling history of the planets, and can potentially confuse determinations of bulk elemental ratios, which provide important insights into planet-formation mechanisms. Using a thermo/photochemical kinetics and transport model, we investigate the extent to which disequilibrium chemical processes affect the composition and spectra of directly imaged giant exoplanets. Results for specific "young Jupiters" such as HR 8799 b and c and 51 Eri b are presented, as are general trends as a function of planetary effective temperature, surface gravity, incident ultraviolet flux, and strength of deep atmospheric convection. We find that quenching is very important on young Jupiters, leading to CO/CH4 and N2/NH3 ratios much greater than; and H2O mixing ratios a factor of a few less than chemical equilibrium predictions. Photochemistry can also be important on such planets, with CO2 and HCN being key photochemical products. Carbon dioxide becomes a particularly major constituent when stratospheric temperatures are low and recycling of water following H2O photolysis becomes stifled. Young Jupiters with effective temperatures less than 700 degrees Kelvin are in a particularly interesting photochemical regime that differs from both transiting hot Jupiters and our own solar-system giant planets.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN32394
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-26
    Description: Xenon in Earth's atmosphere is severely mass fractionated and depleted compared to any plausible solar system source material, yet Kr is unfractionated. These observations seem to imply that Xe has escaped from Earth. But to date no process has been identified that can cause Xe, which is heavier than Kr, to escape while Kr does not. Vigorous hydrodynamic hydrogen escape can produce mass fractionation in heavy gases. The required hydrogen flux is very high but within the possible range permitted by solar Extreme Ultraviolet radiation (EUV, which here means radiation at wavelengths short enough to be absorbed efficiently by hydrogen) heating when Earth was on the order of 100 Myrs old or younger. However this model cannot explain why Xe escapes but Kr does not. Recently, what appears to be ancient atmospheric xenon has been recovered from several very ancient (3-3.5 Ga) terrestrial hydrothermal barites and cherts. What is eye-catching about this ancient Xe is that it is less fractionated that Xe in modern air. In other words, it appears that a process was active on Earth some 3 to 3.5 billion years ago that caused xenon to fractionate. By this time the Sun was no longer the EUV source that it used to. If xenon was being fractionated by escape currently the only viable hypothesis it had to be in the less unfamiliar context of Earths Archean atmosphere and under rather modest levels of EUV forcing. This requires a new model. Here we address the circumstances in which Xe, but not Kr, could escape from Earth as an ion. In a hydrodynamically escaping hydrogen wind the hydrogen is partially photo-ionized. The key concepts are that ions are much more strongly coupled to the escaping flow than are neutrals (so that a relatively modest flow of H and H+ to space could carry Xe+ along with it), and that xenon alone among the noble gases is more easily ionized than hydrogen. This sort of escape is possible if not prevented by a planetary magnetic field. The best prospects for Earth are therefore escape along the polar field lines, although a very weak or absent magnetic field would likely work as well. As applied to the Archean Earth the discussion will be constrained by diffusion-limited hydrogen escape. The extended history of hydrogen escape implicit in Xe escape in the Archean is consistent with suggestions that hydrogen escape from the anoxic Archean atmosphere was considerable, because biogenic methane is expected to have been rather abundant. Hydrogen escape plausibly played the key role in creating oxidizing condition at the surface of the Earth and setting the stage for the creation of an O2 atmosphere.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN18793 , American Geophysical Union Fall 2014; Dec 15, 2014 - Dec 19, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Reflected light spectroscopy and photometry of cool, directly imaged extrasolar giant planets are expected to be performed in the next decade by space-based telescopes equipped with optical wavelength coronagraphs and integral field spectrographs, such as the Wide-Field Infrared Survey Telescope (WFIRST). We are developing a new atmospheric retrieval methodology to help assess the science return and inform the instrument design for such future missions, and ultimately interpret the resulting observations. Our retrieval technique employs an albedo model coupled with both a Markov chain Monte Carlo Ensemble Sampler (emcee) and a multimodal nested sampling algorithm (MultiNest) to map the posterior distribution. This combination makes the global evidence calculation more robust for any given model, and highlights possible discrepancies in the likelihood maps. Here we apply this methodology to simulated spectra of cool giant planets. As a proof-of-concept, our current atmospheric model contains 1 or 2 cloud layers, methane as a major absorber, and a H2-He background gas. This 6-to-9 parameter model is appropriate for Jupiter-like planets and can be easily expanded in the future. In addition to deriving the marginal likelihood distribution and confidence intervals for the model parameters, we perform model selection to determine the significance of methane and cloud detection as a function of expected signal-to-noise, in the presence of spectral noise correlations. After internal validation, the method is applied to realistic reflected-light spectra of Jupiter, Saturn, and HD 99492 c, a likely observing target. We find that the presence or absence of clouds and methane can be determined with high accuracy, while parameters uncertainties are model-dependent.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN32400
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: We use a 1D model to address photochemistry and possible haze formation in the irradiated warm Jupiter 51 Eridani b. The intended focus was to be carbon, but sulfur photochemistry turns out to be important. The case for organic photochemical hazes is intriguing but falls short of being compelling. If they form, they are likeliest to do so if vertical mixing in 51 Eri b is weaker than in Jupiter, and they would be found below the regions where methane and water are photolyzed. The more novel result is that photochemistry turns H2S into elemental sulfur, here treated as S8. In the cooler models, S8 is predicted to condense in optically thick clouds of solid sulfur particles, whilst in the warmer models S8 remains a vapor along with several other sulfur allotropes that are both visually striking and potentially observable. For 51 Eri b, the division between models with and without condensed sulfur is at an effective temperature of 700 K, which is within error its actual effective temperature; the local temperature where sulfur condenses is between 280 and 320 K. The sulfur photochemistry we have discussed is quite general and ought to be found in a wide variety of worlds over a broad temperature range, both colder and hotter than the 650-750 K range studied here, and we show that products of sulfur photochemistry will be nearly as abundant on planets where the UV irradiation is orders of magnitude weaker than it is on 51 Eri b.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN32024
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Xenon is the heaviest gas found in significant quantities in natural planetary atmospheres. It would seem the least likely to escape. Yet there is more evidence for xenon escape from Earth than for any element other than helium and perhaps neon. The most straightforward evidence is that most of the radiogenic Xe from the decay of (129)I (half-life 15.7 Myr) and (244)Pu (half-life 81 Myr) that is Earth's birthright is missing. The missing xenon is often attributed to the impact erosion of early atmospheres of Earth and its ancestors. It is obvious that if most of the radiogenic xenon were driven off by impacts, most of the rest of the atmophiles fared the same fate. The other line of evidence is in the nonradiogenic isotopes of xenon and its silent partner, krypton. Atmospheric xenon is strongly mass fractionated (at about 4% per amu) compared to any known solar system source (Figure 1). This is in stark contrast to krypton, which may not be fractionated at all: atmospheric Kr is slightly heavier than solar Kr (at about 0.5% per amu), but it is the same as in carbonaceous chondrites. Nonradiogenic xenon is also under abundant relative to krypton (the so-called "missing xenon" problem). Together these observations imply that xenon has been subject to fractionating escape and krypton not.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN20427 , Lunar & Planetary Science Conference (LPSC); Mar 16, 2015 - Mar 20, 2015; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...