ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astronomy  (10)
  • Chemistry and Materials (General)  (2)
  • Lunar and Planetary Science and Exploration; Geophysics  (2)
  • Lunar and Planetary Science and Exploration; Inorganic, Organic and Physical Chemistry  (2)
  • 1
    Publication Date: 2018-06-11
    Description: Stardust successfully encountered comet 81P/Wild 2 on 2 January 2004 at a distance of 236.4 +/- 1 km. All encounter investigations acquired valuable new and surprising findings. The time-of-flight spectrometer registered 29 spectra during flyby and measured the first negative ion mass spectra of cometary particles. The dust detectors recorded particles over a broad mass range, 10(exp -11) to 10(exp -4) g. Unexpectedly, the dust distribution along Stardust's flight path was far from uniform, but instead occurred in short 'bursts', suggesting in-flight breakup of fragments ejected from the nucleus. High-resolution, stunning images of the Wild 2 surface show a diverse and complex variety of landforms not seen from comets 1P/Halley and 19P/Borrelly or icy satellites of the outer solar system. Longer-exposure images reveal large numbers of jets projected nearly around the entire perimeter of the nucleus, many of which appear to be highly collimated. A triaxial ellipsoidal fit of the Wild 2 nucleus images yields the principal nucleus radii of 1.65 X 2.00 X2.75 km (+/- 0.05 km). The orientations and source locations on the nucleus surface of 20 highly collimated and partially overlapping jets have been traced. There is every indication that the expected samples were successfully collected from the Wild 2 coma and are poised for a return to Earth on 15 January 2006.
    Keywords: Astronomy
    Type: Journal Of Geophysical Research; Volume 109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-10-02
    Description: The degree of isotopic mixing in the solar nebula and the nature of pre-solar components that have contributed to our solar system remain subjects of vigorous debate. Isotopic anomalies have been identified in Ca-Al inclusions in chondrites [1-4]. This indicates that refractory pre-solar components were not completely homogenized or processed away at the high temperatures experienced by CAIs. Pre-solar grains (SiC, C, etc.) are prevalent in primitive chondrites, and preserve isotopic heterogeneity resulting from the nucleosynthetic processes occurring in the stars from which these grains formed [2,4]. Several recent studies employing precise techniques for measuring Ru, Mo and Zr isotopes in bulk meteorites, have come up with varying conclusions on the degree of effectiveness of nebular mixing on the scale of bulk meteorite material. Some of these studies have reported isotopic anomalies in Mo and Ru [3,5-7], while others have not observed anomalies in Mo, Ru, or Zr [8-10]. Debate over the quality of the data, the normalization techniques employed, the absence or presence of isobaric interferences during the measurements on different types of instruments (e.g. TIMS versus ICP-MS), and other factors, has ensued [11,12].
    Keywords: Astronomy
    Type: Lunar and Planetary Science XXXVI, Part 2; LPI-Contrib-1234-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-08
    Keywords: Astronomy
    Type: International Astronomical Union (IAU) 181 Colloquium; Canterbury; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-08
    Keywords: Astronomy
    Type: International Astronomical Union (IAU) Colluquium; Canterbury; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Some bulk properties of interstellar dust are known through infrared and X-ray observations of the interstellar medium. However, the properties of individual interstellar dust particles are largely unconstrained, so it is not known whether individual interstellar dust particles can be definitively distinguished from interplanetary dust particles in the Stardust Interstellar Dust Collector (SIDC) based only on chemical, mineralogical or isotopic analyses. It was therefore understood from the beginning of the Stardust Interstellar Preliminary Examination (ISPE) that identification of interstellar dust candidates would rest on three criteria - broad consistency with known extraterrestrial materials, inconsistency with an origin as secondary ejecta from impacts on the spacecraft, and consistency, in a statistical sense, of observed dynamical properties - that is, trajectory and capture speed - with an origin in the interstellar dust stream. Here we quantitatively test four interstellar dust candidates, reported previously [1], against these criteria.
    Keywords: Astronomy
    Type: JSC-CN-25743 , 43rd Lunar and Planetary Science Conference; Mar 19, 2012 - Mar 23, 2012; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: Carbonaceous chondrites exhibit a wide range of aqueous and thermal alteration characteristics. Examples of the thermally metamorphosed carbonaceous chondrites (TMCCs) include the C2-ung/CM2TIVs Belgica (B)-7904 and Yamato (Y) 86720. The alteration extent is the most complete in these meteorites and thus they are considered typical end-members of TMCCs exhibiting complete dehydration of matrix phyllosilicates [1, 2]. The estimated heating conditions are 10 to 10(sup 3) days at 700 C to 1 to 100 hours at 890 C, i.e. short-term heating induced by impact and/or solar radiation [3]. The chemical and bulk oxygen isotopic compositions of the matrix of the carbonate (CO3)-poor lithology of the Tagish Lake (hereafter Tag) meteorite bears similarities to these TMCCs [4]. We investigated the experimentally-heated Tag with the use of Raman spectroscopy to understand how short-term heating affects the maturity of insoluble organic matter (IOM) in aqueously altered meteorites.
    Keywords: Lunar and Planetary Science and Exploration; Inorganic, Organic and Physical Chemistry
    Type: JSC-CN-36530 , METSOC Annual Meeting; Aug 07, 2016 - Aug 12, 2016; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-13
    Description: Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade [1-3]. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using -Raman spectroscopy.
    Keywords: Chemistry and Materials (General)
    Type: JSC-CN-33595 , Astrobiology Science Conference 2015 (AbSciCon2015); Jun 15, 2015 - Jun 17, 2015; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA's Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-andgo sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.
    Keywords: Astronomy
    Type: GSFC.JA.6407.2012 , Experimental Astronomy; 23; 3; 809-847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: NASA s Stardust spacecraft collected cometary material during its passage through the dust coma of comet 81P/Wild 2 on January 2nd, 2004 and delivered this material to Earth on January 15th 2006. The first fragment we analyzed during the preliminary examination was partially vaporized by the X-ray beam. The carbonaceous material that survived was re-analysis approx.2 months later and the carbon spectrum for this material had significantly changed from what we first observed.. We have observed similar changes to the carbonaceous matter in some interplanetary dust particles ( IDPs). Some of the 81P/Wild 2 organic matter volatilized upon impact with the aerogel as observed using IR spectroscopy where IR spectra were collected several mms away from sample tracks [1]. The time-temperature profile experienced by any particular 81P/Wild 2 grain during aerogel capture is not known, although Brownlee, et al. suggest that fine-grained materials, 〈1 micron in size, fragmented and then partially vaporized during collection, while particles much larger then 1 micron in size were captured intact [2]. Nearly all organic matter is subject to thermal alteration. To assess the heating and alteration experienced by the 81P/Wild 2 organic matter during capture we are comparing 81P/Wild2 organic matter with IDP organic matter where we have evidence of heating in the IDP [3,4].
    Keywords: Astronomy
    Type: JSC-17992 , 40th Lunar Planetary Science Conference; Mar 23, 2009 - Mar 27, 2009; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Northwest Africa (NWA) 10758 is a newly identified carbonaceous chondrite that is a Bali-like oxidized CV3. The large Ca-Al rich inclusion (CAI) in this sample is approx. 2.4 x 1.4 cm. The CAI is transitional in composition between type A and type B, with interior mineralogy dominated by melilite, plus less abundant spinel and Al-Ti rich diopside, and only very minor anorthite (Fig. 1A). This CAI is largely free of secondary alteration in the exposed section we examined, with almost no nepheline, sodalite or Ca-Fe silicates. The Wark-Lovering (WL) rim on this CAI is dominated by hibonite, with lower abundances of spinel and perovskite, and with hibonite locally overlain by melilite plus perovskite (as in Fig. 1B). Note that the example shown in 1B is exceptional. Around most of the CAI, hibonite + spinel + perovskite form the WL rim, without overlying melilite. The WL rim can be unusually thick, ranging from approx. 20 microns up to approx. 150 microns. A well-developed, stratified accretionary rim infills embayments of the CAI, and thins over protuberances in the convoluted CAI surface.
    Keywords: Lunar and Planetary Science and Exploration; Geophysics
    Type: JSC-CN-39701 , Annual Meeting of The Meteoritical Society; Jul 23, 2017 - Jul 28, 2017; Sante Fe, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...