ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84-year period by the faint DQZ white dwarf (WD) Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurements back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 plus or minus 0.012M and 0.592 plus or minus 0.006M for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon A's age is approximately 2.7 Gyr. Procyon B's location in the H-R diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass. Its position in the mass-radius plane is also consistent with theory, assuming a carbon-oxygen core and a helium-dominated atmosphere. Its progenitor's mass was 1.9-2.2M, depending on its amount of core overshoot. Several astrophysical puzzles remain. In the progenitor system, the stars at periastron were separated by only approximately AU, which might have led to tidal interactions and even mass transfer; yet there is no direct evidence that these have occurred. Moreover the orbital eccentricity has remained high (approximately 0.40). The mass of Procyon B is somewhat lower than anticipated from the initial-to-final-mass relation seen in open clusters. The presence of heavy elements in its atmosphere requires ongoing accretion, but the place of origin is uncertain.
    Keywords: Astronomy
    Type: AD-A626355 , The Astrophysical Journal (ISSN 1538-4357); 813; 2; 106
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-26
    Description: The results of speckle interferometric measurements of binary and multiple stars conducted in 2008 and 2009 at the Blanco and Southern Astrophysical Research (SOAR) 4 m telescopes in Chile are presented. A tot al of 1898 measurements of 1189 resolved pairs or sub-systems and 394 observations of 285 un-resolved targets are listed. We resolved for the first time 48 new pairs, 21 of which are new sub-systems in close visual multiple stars. Typical internal measurement precision is 0.3 mas in both coordinates, typical companion detection capability is delta m approximately 4.2 at 0.15 degree separation. These data were obtained with a new electron-multiplication CCD camera; data processing is described in detail, including estimation of magnitude difference, observational errors, detection limits, and analysis of artifacts. We comment on some newly discovered pairs and objects of special interest.
    Keywords: Astrophysics
    Type: AD-A514179 , The Astrophysical Journal; 139; 743-756
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-17
    Description: The MASSIF (Masses and Stellar Systems with Interferometry) Team will use SIM to investigate the mass content of the Galaxy - from huge stars to barely glimmering brown dwarfs, and from hot white dwarfs to exotic black holes. We will target various samples of the Galactic population to determine and relate the fundamental characteristics of mass, luminosity, age, composition, and multiplicity - attributes that together yield an extensive understanding of the stars. Our samples will include distant clusters that span a factor of 5000 in age, and commonplace stars and substellar objects that lurk near the Sun. The principal goals of the MASSIF Key Project are to (1) define the mass-luminosity relation for main sequence stars in five fundamental clusters so that effects of age and metallicity can be mapped (Trapezium, TW Hydrae, Pleiades, Hyades, and M67), and (2) determine accurate masses for representative examples of nearly every type of star, stellar descendant or brown dwarf in the Galaxy.
    Keywords: Astronomy
    Type: SIM PlanetQuest: Science with the Space Interferometry Mission; 9-11; JPL-Publ-2004-19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: We report the discovery by the Wide-field Infrared Survey Explorer of the z = 2.452 source WISEJ181417.29+341224.9, the first hyperluminous source found in the WISE survey. WISE 1814+3412 is also the prototype for an all-sky sample of approximately 1000 extremely luminous "W1W2-dropouts" (sources faint or undetected by WISE at 3.4 and 4.6 micrometers and well detected at 12 or 22 micrometers). The WISE data and a 350 micrometers detection give a minimum bolometric luminosity of 3.7 x 10(exp 13) solar luminosity, with approximately 10(exp 14) solar luminosity plausible. Followup images reveal four nearby sources: a QSO and two Lyman Break Galaxies (LBGs) at z = 2.45, and an M dwarf star. The brighter LBG dominates the bolometric emission. Gravitational lensing is unlikely given the source locations and their different spectra and colors. The dominant LBG spectrum indicates a star formation rate approximately 300 solar mass yr(exp -1), accounting for less than or equal to 10 percent of the bolometric luminosity. Strong 22 micrometer emission relative to 350 micrometer implies that warm dust contributes significantly to the luminosity, while cooler dust normally associated with starbursts is constrained by an upper limit at 1.1 mm. Radio emission is approximately 10? above the far-infrared/radio correlation, indicating an active galactic nucleus is present. An obscured AGN combined with starburst and evolved stellar components can account for the observations. If the black hole mass follows the local MBH-bulge mass relation, the implied Eddington ratio is approximately greater than 4. WISE 1814+3412 may be a heavily obscured object where the peak AGN activity occurred prior to the peak era of star formation.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN6424
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: As part of NASA's mission to explore habitable planets orbiting nearby stars, this article explores the detection and characterization capabilities of a 4 m space telescope plus 50 m starshade located at the Earth-Sun L2 point, known as the New Worlds Observer (NWO). Our calculations include the true spectral types and distribution of stars on the sky, an iterative target selection protocol designed to maximize efficiency based on prior detections, and realistic mission constraints. We conduct simulated observing runs for a wide range in exozodiacal background levels (epsilon = 1-100 times the local zodi brightness) and overall prevalence of Earth-like terrestrial planets (eta(sub solar halo))0.1-1). We find that even without any return visits, the NWO baseline architecture (IWA = 65 mas, limiting FPB = 4 x 10(exp -11) can achieve a 95% probability of detecting and spectrally characterizing at least one habitable Earth-like planet and an expectation value of approximately 3 planets found, within the mission lifetime and delta V budgets, even in the worst-case scenario (eta(sub solar halo) = 0.1 and = epsilon = 100 zodis for every target). This achievement requires about 1 yr of integration time spread over the 5 yr mission, leaving the remainder of the telescope time for UV-NIR general astrophysics. Cost and technical feasibility considerations point to a "sweet spot" in starshade design near a 50 m starshade effective diameter. with 12 or 16 petals, at a distance of 70,000-100,000 km from the telescope.
    Keywords: Astronomy
    Type: GSFC.ABS.6641.2012 , Publications of the Astronomical Society of the Pacific; 124; 915; 418-447
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-26
    Description: The young open cluster Collinder 419 surrounds the massive O star, HD 193322, that is itself a remarkable multiple star system containing at least four components. Here we present a discussion of the cluster distance based upon new spectral classifications of the brighter members, UBV photometry, and an analysis of astrometric and photometric data from the third U. S. Naval Observatory CCD Astrograph Catalog and Two Micron All Sky Survey Catalog. We determine an average cluster reddening of E(B - V) = 0.37 +/-.05 mag and a cluster distance of 741 plus or minus 36 pc. The cluster probably contains some very young stars that may include a reddened M3 III star, IRAS 20161+4035.
    Keywords: Astronomy
    Type: AD-A528837 , The Astronomical Journal; 140; 3; 744-752
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-16
    Description: Surveys of the three samples of solar-type stars, segregated by chromospheric emission level, were made to determine their multiplicity fractions and to investigate the evolution of multiplicity with age. In total, 245 stars were searched for companions with DeltaV 〈= 3.0 and separations of 0.035" to 1.08" using optical speckle interferometry, By incorporating the visual micrometer survey for duplicity of the LamontHussey Observatory, the angular coverage was extended to 5.0" with no change in in the DeltaV limit. This magnitude difference allows mass ratios of 0.63 and larger to be detected throughout a search region of 2-127 AU for the stars observed. The 84 primaries observed in the chromospherically active sample are presumably part of a young population and are found to have a multiplicity fraction of 17.9% +/- 4.6%. The sample of 118 inactive, presumably older, primaries were selected and observed using identical methods and are found to have a multiplicity fraction of only 8.5% +/- 2.7%. Given the known link between chromospheric activity and age, these results tentatively imply a decreasing stellar multiplicity fraction from 1 to 4 Gyr, the approximate ages of the two samples. Finally, only two of the 14 very active primaries observed were found to have a companion meeting the survey detection parameters. In this case, many of the systems are either very young, or close, RS CVn type multiples that are unresolvable using techniques employed here.
    Keywords: Astrophysics
    Type: AD-A371779 , The Astronomical Journal; 116; 2975-2983
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: Using the MUSTANG 3.3 mm bolometer array on the GBT we have measured the Sunyaev-Zel'dovich Effect (SZE) in the most x-ray luminous cluster known, RXJ 1 347-1145 (z=0.45) at a resolution of 10" (fwhm). This is the highest resolution image of the SZE to date and confirms previous indications of a localized departure from pressure equilibrium in the form of a small, very hot (〉0 keV) parcel of gas, presumably resulting from a merger shock. We discuss the measurements, their interpretation, and future work.
    Keywords: Astronomy
    Type: Bulletin of the American Astronomical Society Electronic Edition; 42; 1; 553|215th AAS Meeting; Jan 03, 2010 - Jan 07, 2010; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...