ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • Astronomy  (1)
  • Astrophysics  (1)
  • PHYSICS, SOLID-STATE  (1)
  • 1
    Publication Date: 2019-06-27
    Description: Study regions of lattice disorder produced in lithium-doped float-zone melted n/p-type silicon solar cells by irradiation with monoenergetic neutrons at doses between 10 to the 10th and 10 to the 13th per cu cm. The defect regions were revealed by chemically etching the surface of the solar cells and by observing carbon replicas in an electron microscope. It was found that the defect density increased with increasing irradiation dose and increased lithium content, whereas the average defect diameter was found to decrease. From thermal annealing experiments it was found that in the lithium-doped material the defect structure was stable at temperatures between 300 and 1200 K. This was found to be in contrast to the undoped material where at the lowest doses considerable annealing was observed to occur. These results are discussed in terms of the theoretical predictions and models of defect clusters proposed by Gossick (1959) and Crawford and Cleland (1959).
    Keywords: PHYSICS, SOLID-STATE
    Type: Journal of Materials Science; 7; Feb. 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational-wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance, that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a blind injection where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron-star and black-hole binary parameter space over the component mass range 1M25M and the full range of spin parameters. The cases reported in this study provide a snapshot of the status of parameter estimation in preparation for the operation of advanced detectors.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN12729 , Physical Review D (ISSN 2470-0010) (e-ISSN 2470-0029); 88; 062001
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Merging neutron stars offer an excellent laboratory for simultaneously studying strong-field gravity and matter in extreme environments. We establish the physical association of an electromagnetic counterpart (EM170817) with gravitational waves (GW170817) detected from merging neutron stars. By synthesizing a panchromatic data set, we demonstrate that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis. The weak gamma rays seen in EM170817 are dissimilar to classical short gamma-ray bursts with ultrarelativistic jets. Instead, we suggest that breakout of a wide-angle, mildly relativistic cocoon engulfing the jet explains the low-luminosity gamma rays, the high-luminosity ultraviolet-optical-infrared, and the delayed radio and x-ray emission. We posit that all neutron star mergers may lead to a wide-angle cocoon breakout, sometimes accompanied by a successful jet and sometimes by a choked jet.
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN53451 , Science (ISSN 0036-8075) (e-ISSN 1095-9203); 358; 6370; 1559-1565
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...