ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 8319-8346, doi:10.1175/JCLI-D-14-00556.1.
    Description: New objectively balanced observation-based reconstructions of global and continental energy budgets and their seasonal variability are presented that span the golden decade of Earth-observing satellites at the start of the twenty-first century. In the absence of balance constraints, various combinations of modern flux datasets reveal that current estimates of net radiation into Earth’s surface exceed corresponding turbulent heat fluxes by 13–24 W m−2. The largest imbalances occur over oceanic regions where the component algorithms operate independent of closure constraints. Recent uncertainty assessments suggest that these imbalances fall within anticipated error bounds for each dataset, but the systematic nature of required adjustments across different regions confirm the existence of biases in the component fluxes. To reintroduce energy and water cycle closure information lost in the development of independent flux datasets, a variational method is introduced that explicitly accounts for the relative accuracies in all component fluxes. Applying the technique to a 10-yr record of satellite observations yields new energy budget estimates that simultaneously satisfy all energy and water cycle balance constraints. Globally, 180 W m−2 of atmospheric longwave cooling is balanced by 74 W m−2 of shortwave absorption and 106 W m−2 of latent and sensible heat release. At the surface, 106 W m−2 of downwelling radiation is balanced by turbulent heat transfer to within a residual heat flux into the oceans of 0.45 W m−2, consistent with recent observations of changes in ocean heat content. Annual mean energy budgets and their seasonal cycles for each of seven continents and nine ocean basins are also presented.
    Description: This study is the result of a collaboration of multiple investigators each supported by the NEWS program.
    Keywords: Climatology ; Energy budget/balance ; Heat budgets/fluxes ; Radiative fluxes ; Surface fluxes ; Satellite observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-23
    Description: From September 15 to 25, 1996, NASA's scatterometer (NSCAT) monitored the evolution of twin typhoons, Violet and Tom, as they moved north from the western tropical Pacific, acquiring features of mid-latitude storms. The typhoons developed frontal structures, increased asymmetry, and dry air was introduced into their cores. Violet hit Japan, causing death and destruction (Figure 1), and Tom merged with a mid-latitude trough and evolved into a large extratropical storm with gale-force winds (Figure 2). We understand relatively little about the extratropical transition of tropical cyclones because of the complex thermodynamics involved [e.g., Sinclair, 1993], but we do know that the mid-latitude storms resulting from tropical cyclones usually generate strong winds and heavy precipitation. Since the transition usually occurs over the ocean, few measurements have been made. The transition is a fascinating science problem, but it also has important economic consequences. The transition occurs over the busiest trans-ocean shipping lanes, and when the resulting storms hit land, they usually devastate populated areas. NSCAT was successfully launched into a near-polar, sun-synchronous orbit on the Japanese Advanced Earth Observing Satellite (ADEOS) in August 1996 from Tanegashima Space Center in Japan. NSCAT's six antennas send microwave pulses at a frequency of 14 GHz to the Earth's surface and measure the backscatter. The antennas scan two 600-km bands of the ocean, which are separated by a 330-km data gap. From NSCAT observations, surface wind vectors can be derived at 25-km spatial resolution, covering 77% of the ice-free ocean in one day and 97% of the ocean in two days, under both clear and cloudy conditions.
    Keywords: Meteorology and Climatology
    Type: EOS, Transactions (ISSN 0096-3941); Volume 78; No. 23; 237, 240
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: Global wind fields are produced by successive corrections that use measurements by the European Remote Sensing Satellite (ERS-1) scatterometer. The methodology is described. The wind fields at 10-meter height provided by the European Center for Medium-Range Weather Forecasting (ECMWF) are used to initialize the interpolation process. The interpolated wind field product ERSI is evaluated in terms of its improvement over the initial guess field (ECMWF) and the bin-averaged ERS-1 wind field (ERSB). Spatial and temporal differences between ERSI, ECMWF and ERSB are presented and discussed.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-203425 , NAS 1.26:203425 , JPL-Publ-96-19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The definition of equivalent neutral wind and the rationale for using it as the geophysical product of a spaceborne scatterometer are reviewed. The differences between equivalent neutral wind and actual wind, which are caused by atmospheric density stratification, are demonstrated with measurements at selected locations. A method of computing this parameter from ship and buoy measurements is described and some common fallacies in accounting for the effects of atmospheric stratification on wind shear are discussed. The computer code for the model to derive equivalent neutral wind is provided.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-203424 , NAS 1.26:203424 , JPL-96-17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: Precipitation over oceans can be estimated from the radar and the microwave radiometer of the Tropical Rain Measuring Mission (TRMM). It can also be estimated from the divergence of the vertically integrated water vapor transport, through the conservation principle, assuming evaporation is relatively small. In tropical cyclones, the divergence of vertically integrated water vapor is highly dependent on the vertical transport and, therefore, on the wind divergence. Spaceborne scatterometers provide surface wind velocity and, therefore, surface wind divergence at spatial resolutions that are much higher than products of numerical weather prediction (NWP). In this study, ocean surface winds derived from the observations of space-based scatterometers and surface precipitation measured by TRMM were objectively interpolated to the same time and location during the passage of a tropical cyclone. Surface precipitation distribution was derived from wind and humidity profiles provided by NWP. When the surface level winds of NWP were replaced by the scatterometer winds, the surface precipitation patterns computed with the conservation method were found to be significantly changed and the new patterns are much closer in agreement with the patterns observed by TRMM.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: The QuikSCAT Mission of the National Aeronautics and Space Administration (NASA) is planned for launch in Spring 1999, reducing the data gap in ocean-wind vector created by the loss of the NASA Scatterometer (NSCAT) on the Japanese Advanced Earth Observing Satellite (ADEOS) spacecraft. The NSCAT instrument ceased functioning when ADEOS failed on June 30, 1997. The follow-on scatterometer for monitoring ocean winds, called SeaWinds, is scheduled for launch on the Japanese ADEOS-II spacecraft in 2000. The Jet Propulsion Laboratory (JPL) has met the challenge to develop and integrate the instrument, ground system, and launch vehicle in less than a year. QuikSCAT will use pencil-beam-antennas in a conical-scan design which is more compact than the fixed fan-beam design of NSCAT. The antenna will radiate ku-band microwaves at 40 and 46 incident angle and measure the backscatter power across a continuous 1800 km swath. QuikSCAT is capable of providing wind-speed and wind-direction at 25 km resolution over 92 percent of the Earth's ice-free oceans every day, under both clear and cloudy conditions. Standard data products will be delivered to science users within 14-days, and fast data products will be available to operational users within two hours of data acquisition. QuikSCAT will be managed by JPL for the NASA's Office of Earth Science Enterprise. It will be launched from Vandenberg Air Force Base, aboard a Titan II vehicle. The satellite core-systems was built by Ball Aerospace Systems Division, Boulder, CO. The operation of QuikSCAT is expected to overlap with ERS-2 and SeaWinds. Spaceborne scatterometers have demonstrated a broad spectrum of scientific applications, including weather systems, wind-driven ocean circulation, land vegetation, polar ice morphology and dynamics, and Ocean-atmosphere-ice interaction.
    Keywords: Astronautics (General)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: A large percentage of the world's population and their agrarian economy must endure the vagaries of the monsoons over the tropical oceans between Africa and the Philippines. We know very little about the oceanic responses to changes of the monsoon in the South China Sea (SCS), which is under the influence of the East Asian Monsoon System, and the Arabian Sea (AS), which is dominated by the Indian Monsoon System; oceanic observations are sparse in both regions. Data from spaceborne microwave scatterometers and radiometers have been used to estimate the two major atmospheric forcing, momentum flux and latent heat flux (LHF), which change with the monsoon winds. Spaceborne sensors also observed the surface signatures of the oceanic response: SST and sea level changes (SLC. Sufficient durations of these data have recently become available to allow the meaningful studies of the annual cycles and interannual anomalies. In SCS, the winter monsoon is strong and steady but the summer monsoon is weak and has large intraseasonal fluctuations. In AS, the summer monsoon is much stronger than the winter monsoon. Significant correlations between LHF and SST tendency, and between curl of wind stress and SLC are found in both oceans. In the north SCS, winds are strong and dry, LHF is high, and ocean cooling is also large in fall; LHF is low and the ocean warms up in spring. In AS, LHF and SST tendency have a semi annual period; LHF is high in summer when the wind is strong and in winter when the wind is dry. Along the coast of Oman, the strong summer southwest monsoon causes intense upwelling, low SST and LHF in summer; such wind-driven SST changes is not as obvious along the Vietnam coast because of the weaker summer monsoon. The negative correlation between curl of wind stress and SLC found in the central basins of both SCS and AS agrees with a simple Ekman pumping scenario. Cyclonic winds drive surface divergence and upwelling in the ocean; the rise of the thermocline causes lower sea levels. Anticyclonic winds cause higher SLC. The exceptions (positive correlations) are found in the coastal regions in the north and the south of SCS, off the west coast of India between 5N and 10N, and along the coast of Somalia.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-16
    Description: The results of this study demonstrate that the surface wind velocity and pressure fields derived from spaceborne scatterometers are useful in monitoring the location and intensity of tropical cyclones. Satellite-borne microwave scatterometers can penetrate the cloudy core regions of tropical cyclones to resolve the circulation in detail over data sparse regions. The location of the cyclone observed by the ERS-1 (First European Remote Sensing Satellite) scatterometer is very close to that revealed in Geostationary Meteorological Satellite images. The surface winds provided by the ERS-1 scatterometer are used here with a modified two-layer planetary boundary layer model which includes effects of curvature, stability, and secondary flow to derive surface pressures near tropical cyclone Oliver. The curvature effect is found to be more significant than stability and secondary flow, which are crucial in deriving accurate surface pressure fields in midlatitudes.
    Keywords: Meteorology and Climatology
    Type: Paper-96JD01229 , Journal of Geophysical Research (ISSN 0148-0227); 101; D12; 17,021-17,027
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-26
    Description: Hydrological years 2006 (HY06, 10/2005-09/2006) and 2007 (HY07, 10/2006-09/2007) provide a unique opportunity to examine hydrological extremes in the central US because there are no other examples of two such highly contrasting precipitation extremes occurring in consecutive years at the Southern Great Plains (SGP) in recorded history. The HY06 annual precipitation in the state of Oklahoma, as observed by the Oklahoma Mesonet, is around 61% of the normal (92.84 cm, based on the 1921-2008 climatology), which results in HY06 the second-driest year in the record. In particular, the total precipitation during the winter of 2005-06 is only 27% of the normal, and this winter ranks as the driest season. On the other hand, the HY07 annual precipitation amount is 121% of the normal and HY07 ranks as the seventh-wettest year for the entire state and the wettest year for the central region of the state. Summer 2007 is the second-wettest season for the state. Large-scale dynamics play a key role in these extreme events. During the extreme dry period (10/2005-02/2006), a dipole pattern in the 500-hPa GH anomaly existed where an anomalous high was over the southwestern U.S. region and an anomalous low was over the Great Lakes. This pattern is associated with inhibited moisture transport from the Gulf of Mexico and strong sinking motion over the SGP, both contributing to the extreme dryness. The precipitation deficit over the SGP during the extreme dry period is clearly linked to significantly suppressed cyclonic activity over the southwestern U.S., which shows robust relationship with the Western Pacific (WP) teleconnection pattern. The precipitation events during the extreme wet period (May-July 2007) were initially generated by active synoptic weather patterns, linked with moisture transport from the Gulf of Mexico by the northward low level jet, and enhanced by the mesoscale convective systems. Although the drought and pluvial conditions are dominated by large-scale dynamic patterns, we have demonstrated that the two positive feedback processes during the extreme dry and wet periods found in this study play a key role to maintain and reinforce the length and severity of existing drought and flood events. For example, during the extreme dry period, with less clouds, LWP, PWV, precipitation, and thinner Cu cloud thickness, more net radiation was absorbed and used to evaporate water from the ground. The evaporated moisture, however, was removed by low-level divergence. Thus, with less precipitation and removed atmospheric moisture, more absorbed incoming solar radiation was used to increase surface temperature and to make the ground drier.
    Keywords: Meteorology and Climatology
    Type: NF1676L-11403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-17
    Description: From September 15 to 25, 1996, NASA's scatterometer (NSCAT) monitored the evolution of twin typhoons-Violet and Tom-as they moved north from the western tropical Pacific, acquiring features of mid-latitude storms. The typhoons developed frontal structures, increased asymmetry, and dry air was introduced into their cores. Violet hit Japan, causing death and destruction, and Tom merged with a mid-latitude trough and evolved into a large extratropical storm with gale-force winds. We understand relatively little about the extratropical transition of tropical cyclones because of the complex thermodynamics involved, but we do know that the mid-latitude storms resulting from tropical cyclones usually generate strong winds and heavy precipitation. Since the transition usually occurs over the ocean, few measurements have been made. The transition is a fascinating science problem, but it also has important economic consequences. The transition occurs over the busiest trans-ocean shipping lanes, and when the resulting storms hit land, they usually devastate populated areas. NSCAT was successfully launched into a near-polar, sunsynchronous orbit on the Japanese Advanced Earth Observing Satellite (ADEOS) in August 1996 from Tanegashima Space Center in Japan. NSCAT's six antennas send microwave pulses at a frequency of 14 GHz to the Earth's surface and measure the backscatter.
    Keywords: Meteorology and Climatology
    Type: EOS (ISSN 0096-3941); 78; 23; 237, 240
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...