ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-28
    Description: We present angular scattering functions for loosely packed aggregates of 250 and 500 identical spheres near the Rayleigh size limit before and after the application of successive layers of an absorbing mantle. All measurements were obtained by using the microwave analog technique. Gross features of the scattering by aggregates without a mantle can be interpreted in terms of coherent scattering from the unit spheres acting independently of each other. The largest deviations from this approximation occur after the first minimum in forward scattering and extend to a scattering angle of 60 or 80 deg for our models. This intermediate range is also where the largest differences occur in the scattering from one aggregate to another. The angular extent of the range is largest for aggregates with the smallest dimensions. The scattering function is usually flat in the backscattering hemisphere and has little or no backscattering increase. The coherent scattering approximation breaks down when the aggregates are coated, and an equivalent spheres approximation becomes a better representation. The maximum degree of polarization near a scattering angle of 90 deg first decreases and then increases again as the mantle grows thicker.
    Keywords: OPTICS
    Type: Applied Optics (ISSN 0003-6935); 32; 21; p. 4088-4100.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-10-26
    Description: Ocean turbulent mixing is a key process affecting the uptake and redistribution of heat, carbon, nutrients, oxygen and other dissolved gasses. Vertical turbulent diffusivity sets the rates of water mass transformations and ocean mixing, and is intrinsically an average quantity over process time scales. Estimates based on microstructure profiling, however, are typically obtained as averages over individual profiles. How representative such averaged diffusivities are, remains unexplored in the quiescent Arctic Ocean. Here, we compare upper ocean vertical diffusivities in winter, derived from the 7Be tracer‐based approach to those estimated from direct turbulence measurements during the year‐long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, 2019–2020. We found that diffusivity estimates from both methods agree within their respective measurement uncertainties. Diffusivity estimates obtained from dissipation rate profiles are sensitive to the averaging method applied, and the processing and analysis of similar data sets must take this sensitivity into account. Our findings indicate low characteristic diffusivities around 10〈sup〉−6〈/sup〉 m〈sup〉2〈/sup〉 s〈sup〉−1〈/sup〉 and correspondingly low vertical heat fluxes.
    Description: Plain Language Summary: Ocean turbulent mixing plays an important role in the uptake and redistribution of heat, carbon, nutrients, oxygen and other properties. For example, this process delivers nutrients to the sunlit surface ocean where they are utilized to produce plants (phytoplankton) for the ecosystem food web. However, strong changes in density within the upper Arctic Ocean hinder vertical transport of nutrients, such that nutrient fluxes are generally smaller than those observed elsewhere in the world ocean. Furthermore, low vertical transport rates isolate the surface ocean from heat input from below which helps protect the ice from melting. Here, we compare the strength of upper ocean mixing, an important parameter for the calculation of vertical transport, derived from two independent methods during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) ice drift experiment, 2019–2020. This comparison allows us to better quantify the vertical diffusivity, and in turn also the vertical transport of for example, heat and nutrients in the ocean.
    Description: Key Points: Arctic Ocean vertical diffusivity (K〈sub〉z〈/sub〉) in the upper halocline in winter is O(10〈sup〉−6〈/sup〉) m〈sup〉2〈/sup〉 s〈sup〉−1〈/sup〉. Diffusivity estimates from 〈sup〉7〈/sup〉Be measurements and ocean microstructure profiling agree within a factor of 2. K〈sub〉z〈/sub〉 estimates from turbulent dissipation rate profiles are sensitive to the averaging method.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Research Council of Norway
    Description: National Science Foundation http://dx.doi.org/10.13039/100000001
    Description: https://doi.org/10.1594/PANGAEA.939816
    Description: https://doi.org/10.26008/1912/bco-dmo.861596.1
    Keywords: ddc:551.46 ; Arctic Ocean ; vertical mixing ; halocline ; winter ; turbulent diffusivity ; microstructure profiling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...