ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Arctic  (1)
  • Meteorology and Climatology  (1)
  • surface layer  (1)
Collection
Keywords
Publisher
Years
  • 1
    ISSN: 1573-0662
    Keywords: active nitrogen ; ozone ; radicals ; snow chemistry ; Arctic ; surface layer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Measurements of NOx (NO +NO2) and the sum of reactive nitrogenconstituents, NOy, were made near the surface atAlert (82.5°N), Canada during March and April1998. In early March when solar insolation was absentor very low, NOx mixing ratios were frequentlynear zero. After polar sunrise when the sun was abovethe horizon for much or all of the day a diurnalvariation in NOx and NOy was observed withamplitudes as large as 30–40 pptv. The source ofactive nitrogen is attributed to release from the snowsurface by a process that is apparently sensitized bysunlight. If the source from the snowpack is a largescale feature of the Arctic then the diurnal trendsalso require a competing process for removal to thesurface. From the diurnal change in the NO/NO2ratio, mid-April mixing ratios for the sum of peroxyand halogen oxide radicals of ≤10 pptv werederived for periods when ozone mixing ratios were inthe normal range of 30–50 ppbv. Mid-day ozoneproduction and loss rates with the active nitrogensource were estimated to be ∼1–2 ppbv/day and in nearbalance. NOy mixing ratios which averaged only295±66 pptv do not support a large accumulation inthe high Arctic surface layer in the winter and springof 1998. The small abundance of NOy relative tothe elevated mixing ratios of other long-livedanthropogenic constituents requires that reactivenitrogen be removed to the surface during transport toor during residence within the high Arctic.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: During the NASA Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) enhanced mixing ratios of nitric oxide were measured in the anvils of thunderstorms and in clear air downwind of storm systems on flights of a Wl3-57F high-altitude aircraft. Mixing ratios greater than l0 - 20 times background were readily observed over distances of 25-120 km due to lightning activity. In many of the Florida storms deposition of NO occurred up to near the tropopause but major deposition usually occurred 1 - 2 km below the tropopause, or mostly within the visible anvil volume formed prior to storm decay. Observations from two storms of very different anvil size and electrical activity allowed estimates of the total mass of NO, vented to the middle and upper troposphere. Using the cloud-to ground (CG) flash accumulations from the National Lightning Detection Network, climatological intra-cloud (IC) to CG ratios, and assuming that CG and IC flashes were of equivalent efficiency for NO production, the ranges of production per flash for a moderate-sized and a large storm were (0.51 - 1.0) x l0(exp 26) and (2.3 - 3.1) x 10(exp 26) molecules NO/flash, respectively. Using the recently determined average global flash rate of 44 8, a gross extrapolation of these two storms to represent possible global annual production rates yield 1.6 - 3.2 and 7.3 - 9.9 Tg(N)/yr, respectively. If the more usual assumption is made that IC efficiency is l/l0th that of CG activity, the ranges of production for the moderate-sized and large storm were (1.3 - 2.7) x l0(exp 26) and (6.0 - 8.1) x l0(exp 26) molecules NO/CG flash, respectively. The estimates from the large storm may be high because there is indirect evidence that the IC/CG ratio was larger than would be derived from climatology. These two storms and others studied did not have flash rates that scaled as approx. H(sup 5) where H is the cloud top altitude. The observed CG flash accumulations and NO(x) mass production estimate for the month of July over the Florida area were compared with a representative 3D global Chemistry-Transport Model (CTMJ that uses the Price et al. lightning parameterization. For two land grid points representing the Florida peninsula the model compared well with the observations: CG flash rates were low by only a factor of approx. 2. When the model grid points included the coastal regions of Florida the flash accumulations were lower than observed by a factor of 3.4 - 4.6. It is recommended that models using the Price et al. parameterization allow any global coastal grid point to maintain the land rather than the marine flash rate parameterization. The convection in this CTM underestimated the actual cloud top heights over Florida by 1 - 2 km and thus the total lightning flash rates and the altitude range of reactive nitrogen deposition. Broad scale (20 - 120 km) median mixing ratios of NO within anvils over Florida were significantly larger than in storms previously investigated over Colorado and New Mexico.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...