ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Grant agreement no: 642973  (4)
  • Aral Sea  (2)
  • 1
    Publication Date: 2019-10-22
    Description: Defining and recording the loss of species diversity is a daunting task, especially if identities of species under threat are not fully resolved. An example is the Pontocaspian biota. The mostly endemic invertebrate faunas that evolved in the Black Sea – Caspian Sea – Aral Sea region and live under variable salinity conditions are undergoing strong change, yet within several groups species boundaries are not well established. Collection efforts in the past decade have failed to produce living material of various species groups whose taxonomic status is unclear. This lack of data precludes an integrated taxonomic assessment to clarify species identities and estimate species richness of Pontocaspian biota combining morphological, ecological, genetic, and distribution data. In this paper, we present an expert-working list of Pontocaspian and invasive mollusc species associated to Pontocaspian habitats. This list is based on published and unpublished data on morphology, ecology, anatomy, and molecular biology. It allows us to (1) document Pontocaspian mollusc species, (2) make species richness estimates, and (3) identify and discuss taxonomic uncertainties. The endemic Pontocaspian mollusc species richness is estimated between 55 and 99 species, but there are several groups that may harbour cryptic species. Even though the conservation status of most of the species is not assessed or data deficient, our observations point to deterioration for many of the Pontocaspian species.
    Keywords: Aral Sea ; bivalves ; Black Sea ; Caspian Sea ; conservation ; gastropods ; nomenclature ; taxonomy ; Marie Skłodowska-Curie Actions ; Action: H2020-MSCA-ITN-2014 ; PRIDE ; Grant agreement no: 642973
    Repository Name: National Museum of Natural History, Netherlands
    Type: Article / Letter to the editor
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-11-05
    Description: The Caspian Sea has been a highly dynamic environment throughout the Quaternary and witnessed major oscillations in lake level, which were associated with changes in salinity and habitat availability. Such environmental pressures are considered to drive strong phylogeographic structures in species by forcing populations into suitable refugia. However, little is actually known on the effect of lake-level fluctuations in the Caspian Sea on its aquatic biota. We compared the phylogeographic patterns of the aquatic Neritidae snail genus Theodoxus across the Pontocaspian region with refugial populations in southern Iran. Three gene fragments were used to determine relationships and divergence times between the sampled populations in both groups. A dated phylogeny and statistical haplotype networks were generated in conjunction with the analyses of molecular variance and calculations of isolation by distance using distance-based redundancy analyses. Extended Bayesian skyline plots were constructed to assess demographic history. Compared with the southern Iranian populations, we found little phylogeographic structure for the Pontocaspian Theodoxus group, with more recent diversification, homogeneity of haplotypes across the Pontocaspian region and a relatively stable demographic history since the Middle Pleistocene. Our results argue against a strong influence of Caspian Sea low stands on the population structure post the early Pleistocene, whereas high stands may have increased the dispersal possibilities and homogenization of haplotypes across the Pontocaspian region during this time. However, during the early Pleistocene, a more dramatic low stand in the Caspian Sea, around a million years ago, may have caused the reduction in Theodoxus diversity to a single lineage in the region. In addition, our results provide new insights into Theodoxus taxonomy and outlooks for regional conservation.
    Keywords: ancient lakes ; Pontocaspian ; lake-level fluctuations ; salinity ; molluscs ; Marie Skłodowska-Curie Actions ; Action: H2020-MSCA-ITN-2014 ; PRIDE ; Grant agreement no: 642973
    Repository Name: National Museum of Natural History, Netherlands
    Type: Article / Letter to the editor
    Format: application/pdf
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
    Format: application/vnd.openxmlformats-officedocument.wordprocessingml.document
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-12
    Description: Defining and recording the loss of species diversity is a daunting task, especially if identities of species under threat are not fully resolved. An example is the Pontocaspian biota. The mostly endemic invertebrate faunas that evolved in the Black Sea \xe2\x80\x93 Caspian Sea \xe2\x80\x93 Aral Sea region and live under variable salinity conditions are undergoing strong change, yet within several groups species boundaries are not well established. Collection efforts in the past decade have failed to produce living material of various species groups whose taxonomic status is unclear. This lack of data precludes an integrated taxonomic assessment to clarify species identities and estimate species richness of Pontocaspian biota combining morphological, ecological, genetic, and distribution data. In this paper, we present an expert-working list of Pontocaspian and invasive mollusc species associated to Pontocaspian habitats. This list is based on published and unpublished data on morphology, ecology, anatomy, and molecular biology. It allows us to (1) document Pontocaspian mollusc species, (2) make species richness estimates, and (3) identify and discuss taxonomic uncertainties. The endemic Pontocaspian mollusc species richness is estimated between 55 and 99 species, but there are several groups that may harbour cryptic species. Even though the conservation status of most of the species is not assessed or data deficient, our observations point to deterioration for many of the Pontocaspian species.
    Keywords: Aral Sea ; bivalves ; Black Sea ; Caspian Sea ; conservation ; gastropods ; nomenclature ; taxonomy ; Marie Sk\xc5\x82odowska-Curie Actions ; Action: H2020-MSCA-ITN-2014 ; PRIDE ; Grant agreement no: 642973
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-18
    Description: The Caspian Sea has been a highly dynamic environment throughout the Quaternary and witnessed major oscillations in lake level, which were associated with changes in salinity and habitat availability. Such environmental pressures are considered to drive strong phylogeographic structures in species by forcing populations into suitable refugia. However, little is actually known on the effect of lake-level fluctuations in the Caspian Sea on its aquatic biota. We compared the phylogeographic patterns of the aquatic Neritidae snail genus Theodoxus across the Pontocaspian region with refugial populations in southern Iran. Three gene fragments were used to determine relationships and divergence times between the sampled populations in both groups. A dated phylogeny and statistical haplotype networks were generated in conjunction with the analyses of molecular variance and calculations of isolation by distance using distance-based redundancy analyses. Extended Bayesian skyline plots were constructed to assess demographic history. Compared with the southern Iranian populations, we found little phylogeographic structure for the Pontocaspian Theodoxus group, with more recent diversification, homogeneity of haplotypes across the Pontocaspian region and a relatively stable demographic history since the Middle Pleistocene. Our results argue against a strong influence of Caspian Sea low stands on the population structure post the early Pleistocene, whereas high stands may have increased the dispersal possibilities and homogenization of haplotypes across the Pontocaspian region during this time. However, during the early Pleistocene, a more dramatic low stand in the Caspian Sea, around a million years ago, may have caused the reduction in Theodoxus diversity to a single lineage in the region. In addition, our results provide new insights into Theodoxus taxonomy and outlooks for regional conservation.
    Keywords: ancient lakes ; Pontocaspian ; lake-level fluctuations ; salinity ; molluscs ; Marie Skłodowska-Curie Actions ; Action: H2020-MSCA-ITN-2014 ; PRIDE ; Grant agreement no: 642973
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
    Format: application/vnd.openxmlformats-officedocument.wordprocessingml.document
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...