ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2003-03-01
    Description: Ecdysone, the major steroid hormone of Drosophila melanogaster, is known for its role in development and reproduction. Flies that are heterozygous for mutations of the ecdysone receptor exhibit increases in life-span and resistance to various stresses, with no apparent deficit in fertility or activity. A mutant involved in the biosynthesis of ecdysone displays similar effects, which are suppressed by feeding ecdysone to the flies. These observations demonstrate the importance of the ecdysone hormonal pathway, a new player in regulating longevity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simon, Anne F -- Shih, Cindy -- Mack, Antha -- Benzer, Seymour -- AG16630/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1407-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology 156-29, California Institute of Technology, 1201 California Boulevard, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610309" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Weight ; Crosses, Genetic ; Drosophila melanogaster/genetics/growth & development/*physiology ; Ecdysone/biosynthesis/*physiology ; Ecdysterone/administration & dosage/pharmacology ; Female ; Fertility ; Genes, Insect ; Ligands ; *Longevity ; Male ; Mutation ; Oxidative Stress ; Phototropism ; Receptors, Steroid/genetics/*physiology ; Starvation ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 257 (1998), S. 478-484 
    ISSN: 1617-4623
    Keywords: Key wordsTag1 ; Transposon ; Arabidopsis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Tag1 is an autonomous transposable element (3.3 kb in length) first identified as an insertion in the CHL1 (NRT1) gene of Arabidopsis thaliana. Tag1 has been found in the Landsberg erecta ecotype of A. thaliana but not in Columbia or WS. In this paper, 41 additional ecotypes were examined for the presence of Tag1. Using an internal Tag1 fragment as probe, we found that DNA from 19 of the 41 ecotypes strongly hybridized to Tag1. Almost all of the Tag1-containing ecotypes had only one or two copies of Tag1 per haploid genome, as determined by Southern blot analysis. The only exception, Bf-1 from Bretagny-sur-Orge, France, had four copies. Two ecotypes, Di-G and S96, gave identical Southern blot patterns to that of Landsberg erecta and were subsequently shown to contain Tag1 at the same two positions found in Landsberg erecta (loci designated as Tag1-2 and Tag1-3). Two other ecotypes, Ag-0 and Lo-1, had a Tag1 element located at Tag1-2 but not at Tag1-3. The distance between these two loci was determined to be 0.37 cM. Analysis of DNA from two related species, A. griffithiana and A. pumila, showed that both species contain sequences that hybridize to Tag1 and that could be amplified with an oligonucleotide specific to the terminal inverted repeats of Tag1. These results show that Tag1 and related elements are present, and may be useful for insertional mutagenesis, in many A. thaliana ecotypes and several Arabidopsis species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...