ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Arabian Sea  (1)
  • Chlorin steryl esters  (1)
  • Marine sediments  (1)
Collection
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 21 (2006): PA1014, doi:10.1029/2005PA001162.
    Description: Sea surface temperature (SST) and seawater δ18O (δ18Ow) were reconstructed in a suite of sediment cores from throughout the Arabian Sea for four distinct time intervals (0 ka, 8 ka, 15 ka, and 20 ka) with the aim of understanding the history of the Indian Monsoon and the climate of the Arabian Sea region. This was accomplished through the use of paired Mg/Ca and δ18O measurements of the planktonic foraminifer Globigerinoides ruber. By analyzing basin-wide changes and changes in cross-basinal gradients, we assess both monsoonal and regional-scale climate changes. SST was colder than present for the majority of sites within all three paleotime slices. Furthermore, both the Indian Monsoon and the regional Arabian Sea mean climate have varied substantially over the past 20 kyr. The 20 ka and 15 ka time slices exhibit average negative temperature anomalies of 2.5°–3.5°C attributable, in part, to the influences of glacial atmospheric CO2 concentrations and large continental ice sheets. The elimination of the cross-basinal SST gradient during these two time slices likely reflects a decrease in summer monsoon and an increase in winter monsoon strength. Changes in δ18Ow that are smaller than the δ18O signal due to global ice volume reflect decreased evaporation and increased winter monsoon mixing. SSTs throughout the Arabian Sea were still cooler than present by an average of 1.4°C in the 8 ka time slice. These cool SSTs, along with lower δ18Ow throughout the basin, are attributed to stronger than modern summer and winter monsoons and increased runoff and precipitation. The results of this study underscore the importance of taking a spatial approach to the reconstruction of processes such as monsoon upwelling.
    Description: Analyses were funded by a SGER grant from the NSF (OCE03–34598). Funding was also provided by a Schlanger Ocean Drilling Program Fellowship (to K.A.D.) and NSF Grant OCE02–20776 (to D.W.O.). 16
    Keywords: Arabian Sea ; Mg/Ca ; Indian monsoon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA01006, doi:10.1029/2003PA000907.
    Description: A record of the downcore distribution of chlorin steryl esters (CSEs) through the Younger Dryas was produced from Cariaco Basin sediments in order to assess the potential use of CSEs as recorders of the structure of phytoplankton communities through time. Using an improved high-performance liquid chromatography method for the separation of CSEs, we find significant changes in the distribution of CSEs during the Younger Dryas in the Cariaco Basin. During the Younger Dryas, enhanced upwelling in the Cariaco Basin caused an increase in the diatom population and therefore an increase in the relative abundance of CSEs derived from diatoms. In contrast, the dinoflagellate population, and therefore CSEs derived from dinoflagellates, decreased in response to the climate change during the Younger Dryas. These community shifts agree well with the shifts observed in the present day on a seasonal basis that result from the north-south migration of the Intertropical Convergence Zone over the Cariaco Basin. We also identify changes in the abundance of several CSEs that seem to reflect rapid warming and cooling events. This study suggests that CSEs are useful proxies for reconstructing phytoplankton communities and paleoenvironments.
    Description: This work was supported by the Chemical Oceanography Division of the National Science Foundation and a WHOI Watson Fellowship (to KAD).
    Keywords: Younger Dryas ; Cariaco Basin ; Chlorin steryl esters
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September, 2005
    Description: This thesis evaluates the nature and magnitude of tropical climate variability from the Last Glacial Maximum to the present. The temporal variability of two specific tropical climate phenomena is examined. The first is the position of the Intertropical Convergence Zone (ITCZ) in the Atlantic basin, which affects sea surface temperature (SST) and precipitation patterns throughout the tropical Atlantic. The second is the strength of the Indian Monsoon, an important component of both tropical and global climate. Long-term variations in the position of the ITCZ in the Atlantic region are determined using both organic geochemical techniques and climate modeling. Upwelling in Cariaco Basin is reconstructed using chlorin steryl esters as proxies for phytoplankton community structure. We find that the diatom population was larger during the Younger Dryas cold event, indicating that upwelling was enhanced and the mean position of the ITCZ was farther south during the Younger Dryas than it is today. A climate simulation using an ocean-atmosphere general circulation model confirms these results by demonstrating that the ITCZ shifts southward in response to high-latitude cooling. The climate of the Arabian Sea region is dominated by the Indian Monsoon. Results from modem sediments from a suite of cores located throughout the Arabian Sea suggest that wind strength is well represented by the accumulation rate and carbon isotopic composition of terrestrially-derived plant waxes in sediments. Arabian Sea SST patterns, reconstructed from a suite of sediment cores representing four time slices utilizing the Mg/Ca SST proxy, suggest that both the summer and winter monsoons were enhanced 8,000 yr BP relative to today while the summer monsoon was weaker and the winter monsoon stronger at 15,000 and 20,000 yr. These results are confirmed by a time-series reconstruction of SST on the Oman Margin that reveals that SST at this site is sensitive to both regional and global climate processes. The results of this thesis demonstrate that tropical climate, as evaluated by a number of different proxies as well as climate models, has varied substantially over the past 20,000 years and is closely coupled to climate at high-latitudes.
    Description: This work was funded by the National Science Foundation (OCE02-20776 and OCE0334598 to D. Oppo), a Schlanger Ocean Drilling Program Fellowship, a WHOI Watson Fellowship, and a Fye Teaching Fellowship.
    Keywords: Marine sediments ; Chemical elements
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...