ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aquatic insects  (1)
  • Lower circumpolar deep water  (1)
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 49, (2022): e2021GL096530, https://doi.org/10.1029/2021gl096530.
    Description: Water-mass transports in the vast and seemingly quiescent abyssal ocean, basically along topographically-guided pathways, play a pivotal role in the Earth's climate. The pulse of abyssal circulations can be taken with observations at topographic choke points. The Yap-Mariana Junction (YMJ) is the exclusive choke point through which the Lower Circumpolar Deep Water (LCDW) enters the Philippine Sea. Here, we quantify the LCDW transport and its variability based on mooring observations at the YMJ and the Mariana Trench (MT). The LCDW flows northward toward the Philippine Sea as an intensified current on the western side of the YMJ, with maximum mean velocity reaching 7.6 cm/s. The mean LCDW transports through the MT and the YMJ are 2.2 ± 1.0 Sv and 2.1 ± 0.4 Sv, respectively. Reversal flow at autumn in both the YMJ and MT is captured, indicating seasonal variability of the abyssal flow.
    Description: This work was supported by the National Natural Science Foundation of China (Grant no. 91858203, 91958205, 42076027, 41676011), the National Key R&D Program of China (Grant no. 2018YFC0309800), the Global Change and Air–Sea Interaction Project (Grant no. GASI-IPOVAI-01-03, GASI-IPOVAI-01-02).
    Description: 2022-07-28
    Keywords: Abyssal circulation ; Yap-Mariana Junction ; Lower circumpolar deep water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-22
    Description: The genus Micronecta Kirkaldy, 1897 is the most species-rich genus in the family Micronectidae, containing more than 160 species. Micronecta is currently divided into 11 subgenera, five of which are monotypic. Moreover, the subgenus Micronecta is an empirical mixture group. The definitions of some subgenera were based on only a few aberrant morphological features, which are specializations with few phylogenetic significances. The relationship between these subgenera remains unclear. In this study, we newly sequenced mitochondrial genomes (mitogenomes) and nuclear rDNAs (nrDNAs) for 13 Micronecta species, representing seven subgenera, and those for ten other water bugs. Our phylogenetic analyses showed that the subgenus Lundbladella represents the sister group to all other studied subgenera of Micronecta. The subgenus Unguinecta was the sister group to the clade that contains Dichaetonecta and Sigmonecta. More importantly, the subgenus Micronecta represents a paraphyletic group, which further forms a monophyletic group together with the subgenera Basileonecta and Ctenonecta. This is for the first time that the phylogeny of the genus Micronecta was investigated based on molecular data and the paraphyly of the subgenus Micronecta was revealed. Such evidence suggested the necessity of the revision of the taxonomic system of the genus in the future, and may also serve as a reference for the delimitation of subgeneric characters.
    Keywords: Aquatic insects ; Corixoidea ; Nepomorpha ; water boatmen ; phylogeny ; subgenus
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...