ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-01-27
    Description: The concept of disease-specific chemotherapy was developed a century ago. Dyes and arsenical compounds that displayed selectivity against trypanosomes were central to this work, and the drugs that emerged remain in use for treating human African trypanosomiasis (HAT). The importance of understanding the mechanisms underlying selective drug action and resistance for the development of improved HAT therapies has been recognized, but these mechanisms have remained largely unknown. Here we use all five current HAT drugs for genome-scale RNA interference target sequencing (RIT-seq) screens in Trypanosoma brucei, revealing the transporters, organelles, enzymes and metabolic pathways that function to facilitate antitrypanosomal drug action. RIT-seq profiling identifies both known drug importers and the only known pro-drug activator, and links more than fifty additional genes to drug action. A bloodstream stage-specific invariant surface glycoprotein (ISG75) family mediates suramin uptake, and the AP1 adaptin complex, lysosomal proteases and major lysosomal transmembrane protein, as well as spermidine and N-acetylglucosamine biosynthesis, all contribute to suramin action. Further screens link ubiquinone availability to nitro-drug action, plasma membrane P-type H(+)-ATPases to pentamidine action, and trypanothione and several putative kinases to melarsoprol action. We also demonstrate a major role for aquaglyceroporins in pentamidine and melarsoprol cross-resistance. These advances in our understanding of mechanisms of antitrypanosomal drug efficacy and resistance will aid the rational design of new therapies and help to combat drug resistance, and provide unprecedented molecular insight into the mode of action of antitrypanosomal drugs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303116/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303116/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alsford, Sam -- Eckert, Sabine -- Baker, Nicola -- Glover, Lucy -- Sanchez-Flores, Alejandro -- Leung, Ka Fai -- Turner, Daniel J -- Field, Mark C -- Berriman, Matthew -- Horn, David -- 085775/Wellcome Trust/United Kingdom -- 085775/Z/08/Z/Wellcome Trust/United Kingdom -- 090007/Wellcome Trust/United Kingdom -- 090007/Z/09/Z/Wellcome Trust/United Kingdom -- 093010/Wellcome Trust/United Kingdom -- 093010/Z/10/Z/Wellcome Trust/United Kingdom -- England -- Nature. 2012 Jan 25;482(7384):232-6. doi: 10.1038/nature10771.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22278056" target="_blank"〉PubMed〈/a〉
    Keywords: Aquaglyceroporins/deficiency/metabolism ; Drug Resistance/*genetics ; Eflornithine/pharmacology ; Endocytosis/drug effects ; Glycosylation/drug effects ; High-Throughput Screening Assays ; Humans ; Lysosomes/drug effects/metabolism ; Melarsoprol/pharmacology ; Nifurtimox/pharmacology ; Pentamidine/pharmacology ; RNA Interference ; Suramin/pharmacology ; Trypanocidal Agents/*pharmacology/therapeutic use ; Trypanosoma brucei brucei/cytology/*drug effects/enzymology/metabolism ; Trypanosomiasis, African/*drug therapy/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...