ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-02-11
    Description: The nonclassical major histocompatibility complex (MHC) class I molecule HLA-E inhibits natural killer (NK) cell-mediated lysis by interacting with CD94/NKG2A receptors. Surface expression of HLA-E depends on binding of conserved peptides derived from MHC class I molecules. The same peptide is present in the leader sequence of the human cytomegalovirus (HCMV) glycoprotein UL40 (gpUL40). It is shown that, independently of the transporter associated with antigen processing, gpUL40 can up-regulate expression of HLA-E, which protects targets from NK cell lysis. While classical MHC class I molecules are down-regulated, HLA-E is up-regulated by HCMV. Induction of HLA-E surface expression by gpUL40 may represent an escape route for HCMV.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tomasec, P -- Braud, V M -- Rickards, C -- Powell, M B -- McSharry, B P -- Gadola, S -- Cerundolo, V -- Borysiewicz, L K -- McMichael, A J -- Wilkinson, G W -- New York, N.Y. -- Science. 2000 Feb 11;287(5455):1031.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Wales College of Medicine, Cardiff CF14 4XN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10669413" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; *Antigens, CD ; Cell Line ; Cell Membrane/immunology ; Cells, Cultured ; Conserved Sequence ; Cytomegalovirus/genetics/immunology/*metabolism ; Cytotoxicity, Immunologic ; Down-Regulation ; HLA Antigens/immunology/*metabolism ; Histocompatibility Antigens Class I/immunology/*metabolism ; Humans ; Killer Cells, Natural/*immunology ; Molecular Sequence Data ; Open Reading Frames ; Protein Sorting Signals/chemistry/*metabolism ; Receptors, Immunologic/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Transfection ; Up-Regulation ; Viral Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-06-02
    Description: Human cytomegalovirus infection perturbs multiple cellular processes that could promote the release of proapoptotic stimuli. Consequently, it encodes mechanisms to prevent cell death during infection. Using rotenone, a potent inhibitor of the mitochondrial enzyme complex I (reduced nicotinamide adenine dinucleotide-ubiquinone oxido-reductase), we found that human cytomegalovirus infection protected cells from rotenone-induced apoptosis, a protection mediated by a 2.7-kilobase virally encoded RNA (beta2.7). During infection, beta2.7 RNA interacted with complex I and prevented the relocalization of the essential subunit genes associated with retinoid/interferon-induced mortality-19, in response to apoptotic stimuli. This interaction, which is important for stabilizing the mitochondrial membrane potential, resulted in continued adenosine triphosphate production, which is critical for the successful completion of the virus' life cycle. Complex I targeting by a viral RNA represents a refined strategy to modulate the metabolic viability of the infected host cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reeves, Matthew B -- Davies, Andrew A -- McSharry, Brian P -- Wilkinson, Gavin W -- Sinclair, John H -- G0700142/Medical Research Council/United Kingdom -- G9202171/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2007 Jun 1;316(5829):1345-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17540903" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; *Apoptosis ; Apoptosis Regulatory Proteins/genetics/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Cytomegalovirus/genetics/growth & development/*physiology ; Electron Transport Complex I/antagonists & inhibitors/*metabolism ; Enzyme Inhibitors/pharmacology ; Fibroblasts/metabolism/virology ; Humans ; Membrane Potential, Mitochondrial ; Mitochondria/*metabolism ; NADH, NADPH Oxidoreductases/genetics/metabolism ; Neurons/*cytology/*virology ; Oxidative Stress ; RNA, Untranslated/genetics/metabolism ; RNA, Viral/genetics/*metabolism ; Rotenone/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...