ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0878
    Keywords: Antidiuretic hormone ; Freeze-fracture ; Rapid-freeze ; Fusion events ; Particle aggregate turnover ; Urinary bladder ; Anura
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Antidiuretic hormone (ADH) causes the appearance of water-conducting particle aggregates in the luminal membrane of receptor cells in amphibian bladder and skin, and in the mammalian collecting duct. The aggregates originate from cytoplasmic tubules that fuse with the luminal membrane during ADH stimulation. We have studied the process of fusion and the structure of the particle aggregates by a rapid-freeze technique that renders chemical fixation and glycerol protection unnecessary. Our findings differ in some important respects from previously published work. Aggregate particles, in our study, partition equally between the external (EF) and protoplasmic (PF) membrane leaflets, rather than remaining in the protoplasmic leaflet exlcusively. By including the entire population of fusion images in our survey, we have found that aggregate delivery in ADH-treated cells proceeds preferentially from small fusion images whose diameter is significantly less than the 0.12 μm characteristic of the carrier tubules themselves. We have also found that, even in unstimulated preparations, fusion images are numerous, being mostly of small diameter. ADH stimulation produces a moderate increase in the number of fusion images and a significant increase in fusion-image diameter. These findings indicate that the individual particles are mobile within the membrane, lacking interparticle linkage. In addition, contact of cytoplasmic tubules with the luminal membrane may take place even in the absence of ADH, producing small fusion images which are not associated with aggregate delivery to the luminal membrane.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...