ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0948-5023
    Keywords: Keywords Antiangiogenesis ; Antiproliferation ; Docking study ; Drug design ; ras mutation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Farnesyltransferase (FT) inhibitors can repress tumor cell proliferation without substantially interfering with normal cell growth and are thus promising in cancer treatment. A detailed knowledge of how substrates and inhibitors bind to FT at the atomic level can expedite screening and rational design of improved FT inhibitors. Here we report theoretical models of the FT complexed with FPP and the potent nonpeptidic inhibitor SCH 56580 and other inhibitor-FPP-FT ternary complexes derived from the docking studies prior to any crystal structures of the FT liganded with nonpeptidic inhibitors. On the basis of these models we evaluate the roles of FPP, Zn2+ and the zinc-coordinated water molecule in inhibitor binding, and propose the structural determinants of binding of nonpeptidic FT inhibitors. Furthermore, we suggest the use of the FPP-FT binary complex as a novel and effective drug target structure for screening and rational design of improved FT inhibitors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular modeling 5 (1999), S. 134-140 
    ISSN: 0948-5023
    Keywords: Keywords Zinc proteins ; Endostatin ; Farnesyltransferase ; Matrix metalloproteinases ; Zinc finger
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Zinc is a critical component of more than 300 proteins including farnesyltransferase, matrix metalloproteinases and endostatin that are involved in the front-line cancer research, and a host of proteins termed zinc fingers that mediate protein-protein and protein-nucleic acid interactions. Despite the growing appreciation of zinc in modern biology, the knowledge of zinc′s coordination nature in proteins remains controversial. It is typically assumed that Zn2+ coordinates to four to six ligands, which led to intensive debates about whether the catalysis of some zinc proteins is regulated by zinc′s four- or five-coordinate complex. Here we report the inherent uncertainty, due to the experimental resolution, in classifying zinc′s five- and six-coordinate complexes in protein crystal structures, and put forward a tetrahedral coordination concept that Zn2+ coordinates to only four ligands mainly because of its electronic structure that accommodates four pairs of electrons in its vacant 4s4p 3 orbitals. Experimental observations of five- and six-coordinate complexes were due to one or two pairs of ambidentate coordinates that exchanged over time and were averaged as bidentate coordinates. This concept advances understanding of zinc′s coordination nature in proteins and the means to study zinc proteins to unlock the secrets of Zn2+ in human biology. In particular, according to this concept, it is questionable to study zinc′s coordination in proteins with Co2+ as a surrogate of Zn2+ for spectroscopic measurements, since the former is a d7 unclosed shell divalent cation whereas the latter is a d10 closed shell divalent cation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...