ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1615-6102
    Keywords: Ascorbate stabilization ; Ascorbate free radical ; Plasma membrane redox system ; HL-60 cells ; Cyclic AMP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Ascorbate is stabilized in the presence of HL-60 cells. Our results showed that cAMP derivatives and agents that increase cAMP stimulate the ability of HL-60 cells to stabilize ascorbate. On the other hand, tunicamycin, a glycosilation-interfering agent, inhibited this ability. The ascorbate stabilization in the presence of HL-60 cells has been questioned as a simple chemical effect. Further properties and controls about the enzymatic nature of this stabilization are described and discussed. This data, together with hormonal regulation, support the hypothesis that an enzymatic redox system located at the plasma membrane is responsible of the extracellular ascorbate stabilization by HL-60 cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 205 (1998), S. 107-113 
    ISSN: 1615-6102
    Keywords: Antioxidant protection ; DT-diaphorase ; Cytochromeb 5 reductase ; Plasma membrane ; α-Tocopherol ; Ubiquinone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Several enzyme systems have been proposed to play a role in the maintenance of ubiquinol in membranes other than the inner mitochondrial membrane. The aim of this study was to investigate the mechanisms involved in NADH-driven regeneration of antioxidant ubiquinol at the plasma membrane. Regeneration was measured by quantifying the oxidized and reduced forms of ubiquinone by electrochemical detection after separation by high-performance liquid chromatography. Plasma membrane incubation with NADH resulted in the consumption of endogenous ubiquinone, and a parallel increase in ubiquinol levels. The activity showed saturation kinetics with respect to the pyridine nucleotides and was moderately inhibited byp-hydroxymercuribenzoate. Only a slight inhibition was achieved with dicumarol at concentrations reported to fully inhibit DT-diaphorase. Salt-extracted membranes displayed full activity of endogenous ubiquinol regeneration, supporting the participation of an integral membrane protein. In liposomes-reconstituted systems, the purified cytochromeb 5 reductase catalyzed the reduction of the natural ubiquinone homologue coenzyme Q10 at rates accounting for the activities observed in whole plasma membranes, and decreased the levels of lipid peroxidation. Our data demonstrate the role of the cytochromeb 5 reductase in the regeneration of endogenous ubiquinol.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...