ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-9368
    Keywords: DNA integration ; transgenics ; micromanipulation ; PCR
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of DNA microinjection at various times afterin vitro insemination on DNA detection and survival rates of bovine embryos was investigated. Oocytes were inseminated 24 h after maturation with frozen/thawed semen prepared with a Percoll separation procedure. At 11, 15 and 19 h after insemination, embryos were centrifuged to visualize pronuclei and microinjected with a murine whey acidic protein-human protein C genomic DNA construct. After culture for 7 days on Buffalo Rat Liver cells, embryos were assessed for stage of development and assayed for the presence of the transgene by polymerase chain reaction. Of zygotes in the 11h after insemination treatment, 16% (25/152) of non-injected and 7% (11/161) of injected embryos developed to the morula or blastocyst stage. Comparable development of non-injected and injected embryos treated at 15h after insemination was 15% (23/158) and 4% (6/159) and treated at 19 h after insemination was 14% (23/162) and 1% (1/165), respectively. Development of injected embryos was greater (p〈0.05) when injection was performed at 11 h after insemination compared to 19 h after insemination. Development of non-injected embryos was greater (p〈0.01) than that of injected embryos. There was no difference in transgene detection frequency in embryos of all developmental states between treatments (53% at 11; 50% at 15; 48% at 19h after insemination). Injected embryos testing positive for the presence of the transgene exhibited increased development over negative embryos (p〈0.01). Greater development efficiencies can be obtained in microinjected bovine embryos when injection is performed early in pronuclear formation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Angewandte Chemie International Edition in English 34 (1995), S. 1545-1554 
    ISSN: 0570-0833
    Keywords: antiomony compounds ; bismuth compounds ; lead compounds ; thallium compounds ; tin compounds ; Antimony ; Bismuth ; Lead ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Alkali metal organometallic complexes (containing C-metal bonds) and the frequently structrually related alkali metal amides and alkoxides have been investigated extensively both in the solid state and in solution in the past two decades. However, until recently, the related complexes containing the heavier metallic and semi-metallic p block elements and the alkali and alkaline earth metals had rarely been studied in their own right. Recent solid-state structural studies have illustrated the immense structural diversity and bonding modes to be found within these species. One of the principal focuses of recent studies has been complexes containing organometallic anions of p block metals (e.g., triorganostannates, containing R3Sn-) in which metal-metal bonds occur between the heavy p block metal and the alkali or alkaline earth metal and the investigation of the nature of this bonding. The development of new synthetic routes has also allowed the preparation of a variety of anionic ligands with p block metal centers which promise new opportunities in coordination chemistry. In addition, the synthesis of a family of homologous anionic π complexes has given a fresh direction in the chemistry of p block metal metallocene complexes.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-04
    Description: Dawn's framing camera observed boulders on the surface of Vesta when the spacecraftwas in its lowest orbit (Low Altitude Mapping Orbit, LAMO). We identified, measured, and mapped boulders in LAMO images, which have a scale of 20 m per pixel. We estimate that our sample is virtually complete down to a boulder size of 4 pixels (80 m). The largest boulder is a 400 m‐sized block on the Marcia crater floor. Relatively few boulders reside in a large area of relatively low albedo, surmised to be the carbon‐rich ejecta of the Veneneia basin, either because boulders form less easily here or live shorter. By comparing the density of boulders around craters with a known age, we find that the maximum boulder lifetime is about 300 Ma. The boulder size‐frequency distribution (SFD) is generally assumed to follow a power law. We fit power laws to the Vesta SFD by means of the maximum likelihood method, but they do not fit well. Our analysis of power law exponents for boulders on other small Solar System bodies suggests that the derived exponent is primarily a function of boulder size range. The Weibull distribution mimics this behavior and fits the Vesta boulder SFD well. The Weibull distribution is often encountered in rock grinding experiments and may result from the fractal nature of cracks propagating in the rock interior. We propose that, in general, the SFD of particles (including boulders) on the surface of small bodies follows a Weibull distribution rather than a power law.
    Description: Key Points: We mapped boulders larger than 60 m on asteroid Vesta and found all associated with impact craters. The maximum lifetime of these large Vesta boulders is about 300 Ma, similar to that of meter‐sized lunar boulders. Their cumulative size‐frequency distribution is best fit by a Weibull distribution rather than a power law.
    Keywords: 523 ; Vesta ; Asteroid
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...