ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Anthesis-silking interval  (1)
  • Chemiluminescence  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 86 (1993), S. 975-984 
    ISSN: 1432-2242
    Keywords: Chemiluminescence ; Genotyping costs ; RAPD ; RFLP ; Zea mays
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Three molecular marker protocols, chemiluminescent restriction fragment length polymorphisms (c-RFLPs), radioactivity-based restriction fragment length polymorphisms (r-RFLPs), and randomly amplified DNA polymorphisms (RAPDs) were compared in terms of cost and time efficiency. Estimates of cost of supplies and time requirements were obtained from simulations of maize (Zea mays L.) genotyping experiments utilizing protocols currently in use. The increase in total cost with increasing numbers of individuals genotyped and markers analyzed is higher for RAPDs than for RFLPs. RAPDs were generally found to be more cost and time efficient for studies involving small sample sizes, while RFLPs have the advantage for larger sample sizes. Because of the shorter exposure times involved, c-RFLPs require less time than r-RFLPs to obtain a given amount of information. Variations in the protocols, such as number of re-uses of Southern blots or cost of Taq DNA polymerase per reaction of amplification, also affect the relative merits of RAPDs and RFLPs. Two examples were analyzed where molecular markers are used: a germ plasm survey and quantitative trait loci (QTL) mapping in a segregating population. No protocol was found to be the most cost and time efficient over the entire range of sample sizes and number of marker loci studied.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Anthesis-silking interval ; Drought ; Quantitative trait loci ; RFLP ; Tropical maize
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Drought is an important climatic phenomenon which, after soil infertility, ranks as the second most severe limitation to maize production in developing countries. When drought stress occurs just before or during the flowering period, a delay in silking is observed, resulting in an increase in the length of the anthesis-silking interval (ASI) and in a decrease in grain yield. Selection for reduced ASI in tropical open-pollinated varieties has been shown to be correlated with improved yields under drought stress. Since efficient selection for drought tolerance requires carefully managed experimental conditions, molecular markers were used to identify the genomic segments responsible for the expression of ASI, with the final aim of developing marker-assisted selection (MAS) strategies. An F2population of 234 individuals was genotyped at 142 loci and F3 families were evaluated in the field under several water regimes for male flowering (MFLW), male sterility (STER), female flowering (FFLW) and ASI. The genetic variance of ASI increased as a function of the stress intensity, and the broad-sense heritabilites of MFLW, FFLW and ASI were high under stress conditions, being 86%, 82% and 78%, respectively. Putative quantitative trait loci (QTLs) involved in the expression of MFLW and/or FFLW under drought were detected on chromosomes 1, 2, 4, 5, 8, 9 and 10, accounting for around 48% of the phenotypic variance for both traits. For ASI, six putative QTLs were identified under drought on chromosomes 1, 2, 5, 6, 8 and 10, and together accounted for approximately 47% of the phenotypic variance. Under water stress conditions, four QTLs were common for the expression of MFLW and FFLW, one for the expression of ASI and MFLW, and four for the expression of ASI and FFLW. The number of common QTLs for two traits was related to the level of linear correlation between these two traits. Segregation for ASI was found to be transgressive with the drought-susceptible parent contributing alleles for reduced ASI (4 days) at two QTL positions. Alleles contributed by the resistant line at the other four QTLs were responsible for a 7-day reduction of ASI. These four QTLs represented around 9% of the linkage map, and were stable over years and stress levels. It is argued that MAS based on ASI QTLs should be a powerful tool for improving drought tolerance of tropical maize inbred lines.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...