ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-11-15
    Description: The mechanical behavior of the sandy facies of Opalinus Clay (OPA) was investigated in 42 triaxial tests performed on dry samples at unconsolidated, undrained conditions at confining pressures (pc) of 50–100 MPa, temperatures (T) between 25 and 200 °C and strain rates (ε˙) of 1 × 10〈sup〉–3〈/sup〉–5 × 10〈sup〉–6〈/sup〉 s〈sup〉−1〈/sup〉. Using a Paterson-type deformation apparatus, samples oriented at 0°, 45° and 90° to bedding were deformed up to about 15% axial strain. Additionally, the influence of water content, drainage condition and pre-consolidation was investigated at fixed p〈sub〉c〈/sub〉–T conditions, using dry and re-saturated samples. Deformed samples display brittle to semi-brittle deformation behavior, characterized by cataclastic flow in quartz-rich sandy layers and granular flow in phyllosilicate-rich layers. Samples loaded parallel to bedding are less compliant compared to the other loading directions. With the exception of samples deformed 45° and 90° to bedding at p〈sub〉c〈/sub〉 = 100 MPa, strain is localized in discrete shear zones. Compressive strength (σ〈sub〉max〈/sub〉) increases with increasing p〈sub〉c〈/sub〉, resulting in an internal friction coefficient of ≈ 0.31 for samples deformed at 45° and 90° to bedding, and ≈ 0.44 for samples deformed parallel to bedding. In contrast, pre-consolidation, drainage condition, T and ε˙ do not significantly affect deformation behavior of dried samples. However, σ〈sub〉max〈/sub〉 and Young’s modulus (E) decrease substantially with increasing water saturation. Compared to the clay-rich shaly facies of OPA, sandy facies specimens display higher strength σmax and Young’s modulus E at similar deformation conditions. Strength and Young’s modulus of samples deformed 90° and 45° to bedding are close to the iso-stress Reuss bound, suggesting a strong influence of weak clay-rich layers on the deformation behavior.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Helmholtz-Gemeinschaft http://dx.doi.org/10.13039/501100001656
    Description: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ (4217)
    Keywords: ddc:550.78 ; Clay rock ; Sandy facies of Opalinus Clay ; Triaxial deformation experiments ; Microstructural deformation mechanisms ; Pressure-, temperature- and strain rate-dependent mechanical behaviour ; Anisotropy
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-08-03
    Description: Abstract
    Description: The data set contains stress-strain data of Carrara marble experimentally deformed in triaxial compression at temperatures of 20 – 800°C, confining pressures of 30 – 300 MPa, and strain rates between 10-3 and 10-6 s-1. This range covers conditions, at witch marble deforms in the semi-brittle regime, i.e., strength depends on all parameters, but with different sensitivity. Semi-brittle deformation behavior is expected to be important in the mid continental crust. The experiments were conducted in the Experimental Rock Deformation Laboratory of the GFZ German Research Centre for Geosciences in Potsdam, Germany. The data are separated into 91 individual ASCII files, one for each sample. The corresponding temperature, pressure and strain rate conditions are listed in Tab. 1. of the data description and in the associated work by Rybacki et al. (submitted).
    Description: Methods
    Description: Cylindrical samples were prepared from Carrara marble (Bianco Lorano, Apuane Alps, Italy). Samples denoted CMxx, where xx is sample number, were 20 mm long and 10 mm in diameter; samples Mbxx were 60 mm long and 30 mm in diameter. Both set of samples were dry and deformed in two different deformation apparatuses using Argon gas as confining medium. Raw data were axial force and axial displacement, measured with a load cell and LVDT, respectively. Raw data (axial force and displacement) were converted to stress and strain assuming constant volume deformation. All data are corrected for system compliance and jacket strength.
    Keywords: marble ; semi-brittle deformation ; creep ; twinning-induced plasticity ; EPOS ; European Plate Observing System ; multi-scale laboratories ; rock and melt physical properties ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRAIN ; Patterson Apparatus ; Strength 〉 Triaxial Compressive Strength
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...