ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (52)
  • Maps
  • Animals  (52)
Collection
  • Articles  (52)
  • Maps
  • 1
    Publication Date: 1999-08-24
    Description: Pig organs may offer a solution to the shortage of human donor organs for transplantation, but concerns remain about possible cross-species transmission of porcine endogenous retrovirus (PERV). Samples were collected from 160 patients who had been treated with various living pig tissues up to 12 years earlier. Reverse transcription-polymerase chain reaction (RT-PCR) and protein immunoblot analyses were performed on serum from all 160 patients. No viremia was detected in any patient. Peripheral blood mononuclear cells from 159 of the patients were analyzed by PCR using PERV-specific primers. No PERV infection was detected in any of the patients from whom sufficient DNA was extracted to allow complete PCR analysis (97 percent of the patients). Persistent microchimerism (presence of donor cells in the recipient) was observed in 23 patients for up to 8.5 years.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paradis, K -- Langford, G -- Long, Z -- Heneine, W -- Sandstrom, P -- Switzer, W M -- Chapman, L E -- Lockey, C -- Onions, D -- Otto, E -- New York, N.Y. -- Science. 1999 Aug 20;285(5431):1236-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Imutran Ltd. (a Novartis Pharma AG company), Post Office Box 399, Cambridge CB2 2YP, UK. khazal.paradis@pharma.novartis.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10455044" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Aged ; Animals ; Antibodies, Viral/blood ; Child ; Child, Preschool ; Chimera ; DNA, Viral/analysis ; Extracorporeal Circulation ; Female ; *Gammaretrovirus/genetics/immunology/isolation & purification ; Humans ; Immunoblotting ; Islets of Langerhans Transplantation ; Male ; Middle Aged ; RNA, Viral/analysis ; Retrospective Studies ; Retroviridae Infections/diagnosis/*transmission ; Reverse Transcriptase Polymerase Chain Reaction ; Skin Transplantation ; Swine ; *Transplantation, Heterologous/adverse effects ; Tumor Virus Infections/diagnosis/*transmission ; Viremia/diagnosis ; *Zoonoses
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-02-11
    Description: Gradients of chemoattractants elicit signaling events at the leading edge of a cell even though chemoattractant receptors are uniformly distributed on the cell surface. In highly polarized Dictyostelium discoideum amoebas, membrane-associated betagamma subunits of heterotrimeric guanine nucleotide-binding proteins (G proteins) were localized in a shallow anterior-posterior gradient. A uniformly applied chemoattractant generated binding sites for pleckstrin homology (PH) domains on the inner surface of the membrane in a pattern similar to that of the Gbetagamma subunits. Loss of cell polarity resulted in uniform distribution of both the Gbetagamma subunits and the sensitivity of PH domain recruitment. These observations indicate that Gbetagamma subunits are not sufficiently localized to restrict signaling events to the leading edge but that their distribution may determine the relative chemotactic sensitivity of polarized cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jin, T -- Zhang, N -- Long, Y -- Parent, C A -- Devreotes, P N -- GM-28007/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Feb 11;287(5455):1034-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10669414" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Membrane/metabolism ; Cell Polarity ; Chemotactic Factors/pharmacology ; Chemotaxis/*physiology ; Cyclic AMP/pharmacology ; Dictyostelium/metabolism/*physiology ; *GTP-Binding Protein beta Subunits ; *GTP-Binding Protein gamma Subunits ; GTP-Binding Proteins/*metabolism ; *Heterotrimeric GTP-Binding Proteins ; Recombinant Fusion Proteins/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-09-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, M -- Thornton, K -- New York, N.Y. -- Science. 2001 Aug 31;293(5535):1551.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11533445" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/genetics ; Drosophila melanogaster/genetics ; *Evolution, Molecular ; Gene Duplication ; Gene Silencing ; *Genes, Duplicate ; Genome ; Half-Life ; Saccharomyces cerevisiae/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-07-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Carole A -- Hoffman, Stephen L -- New York, N.Y. -- Science. 2002 Jul 19;297(5580):345-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Malaria Vaccine Development Unit, National Institutes of Health, Rockville, MD 20852, USA. clong@niaid.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12130768" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Protozoan/immunology ; Antigens, Protozoan/immunology ; B-Lymphocytes/immunology ; Clinical Trials, Phase II as Topic ; Genes, Protozoan ; Genomics ; Host-Parasite Interactions ; Humans ; *Malaria/epidemiology/immunology/parasitology/prevention & control ; *Malaria Vaccines/immunology ; *Malaria, Falciparum/epidemiology/immunology/parasitology/prevention & control ; *Plasmodium/genetics/immunology/physiology ; *Plasmodium falciparum/immunology/physiology ; Proteome ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1999-07-20
    Description: Although polymorphic inversions in Drosophila are very common, the origin of these chromosomal rearrangements is unclear. The breakpoints of the cosmopolitan inversion 2j of D. buzzatii were cloned and sequenced. Both breakpoints contain large insertions corresponding to a transposable element. It appears that the two pairs of target site duplications generated upon insertion were exchanged during the inversion event, and that the inversion arose by ectopic recombination between two copies of the transposon that were in opposite orientations. This is apparently the mechanism by which transposable elements generate natural inversions in Drosophila.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Caceres, M -- Ranz, J M -- Barbadilla, A -- Long, M -- Ruiz, A -- New York, N.Y. -- Science. 1999 Jul 16;285(5426):415-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departament de Genetica i de Microbiologia, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona), Spain. mariocs@cc.uab.es〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10411506" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Chromosome Inversion ; Cloning, Molecular ; *DNA Transposable Elements ; DNA, Complementary ; Drosophila/*genetics ; Gene Expression ; Genes, Insect ; In Situ Hybridization ; Models, Genetic ; Open Reading Frames ; Polymerase Chain Reaction ; Recombination, Genetic ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2002-01-05
    Description: The Drosophila melanogaster fourth chromosome, believed to be nonrecombining and invariable, is a classic example of the effect of natural selection in eliminating genetic variation in linked loci. However, in a chromosome-wide assay of nucleotide variation in natural populations, we have observed a high level of polymorphism in a approximately 200-kilobase region and marked levels of polymorphism in several other fragments interspersed with regions of little variation, suggesting different evolutionary histories in different chromosomal domains. Statistical tests of neutral evolution showed that a few haplotypes predominate in the 200-kilobase polymorphic region. Finally, contrary to the expectation of no recombination, we identified six recombination events within the chromosome. Thus, positive Darwinian selection and recombination have affected the evolution of this chromosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Wen -- Thornton, Kevin -- Berry, Andrew -- Long, Manyuan -- New York, N.Y. -- Science. 2002 Jan 4;295(5552):134-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolution, Committee on Genetics, University of Chicago, 1101 East 57 Street, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11778050" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Pairing ; Chromosome Inversion ; Chromosomes/*genetics ; Drosophila Proteins/genetics ; Drosophila melanogaster/*genetics ; Evolution, Molecular ; *Genes, Insect ; *Genetic Variation ; Haplotypes ; Introns ; Linkage Disequilibrium ; Monte Carlo Method ; Mutation ; Nucleotides/genetics ; *Polymorphism, Genetic ; *Recombination, Genetic ; Selection, Genetic ; Sequence Analysis, DNA ; Trans-Activators/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-10-26
    Description: In songbirds, the remarkable temporal precision of song is generated by a sparse sequence of bursts in the premotor nucleus HVC. To distinguish between two possible classes of models of neural sequence generation, we carried out intracellular recordings of HVC neurons in singing zebra finches (Taeniopygia guttata). We found that the subthreshold membrane potential is characterized by a large, rapid depolarization 5-10 ms before burst onset, consistent with a synaptically connected chain of neurons in HVC. We found no evidence for the slow membrane potential modulation predicted by models in which burst timing is controlled by subthreshold dynamics. Furthermore, bursts ride on an underlying depolarization of approximately 10-ms duration, probably the result of a regenerative calcium spike within HVC neurons that could facilitate the propagation of activity through a chain network with high temporal precision. Our results provide insight into the fundamental mechanisms by which neural circuits can generate complex sequential behaviours.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2998755/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2998755/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Michael A -- Jin, Dezhe Z -- Fee, Michale S -- DC009280/DC/NIDCD NIH HHS/ -- MH067105/MH/NIMH NIH HHS/ -- R01 MH067105/MH/NIMH NIH HHS/ -- R01 MH067105-06/MH/NIMH NIH HHS/ -- R01 MH067105-07/MH/NIMH NIH HHS/ -- England -- Nature. 2010 Nov 18;468(7322):394-9. doi: 10.1038/nature09514. Epub 2010 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20972420" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium Channels, L-Type/metabolism ; Calcium Signaling/drug effects ; Finches/*physiology ; Male ; Membrane Potentials/drug effects ; *Models, Neurological ; Neural Pathways/drug effects/*physiology ; Neurons/drug effects/*metabolism ; Sleep/physiology ; Synapses/*metabolism ; Vocalization, Animal/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-05-30
    Description: The extinct placoderm fishes were the dominant group of vertebrates throughout the Middle Palaeozoic era, yet controversy about their relationships within the gnathostomes (jawed vertebrates) is partly due to different interpretations of their reproductive biology. Here we document the oldest record of a live-bearing vertebrate in a new ptyctodontid placoderm, Materpiscis attenboroughi gen. et sp. nov., from the Late Devonian Gogo Formation of Australia (approximately 380 million years ago). The new specimen, remarkably preserved in three dimensions, contains a single, intra-uterine embryo connected by a permineralized umbilical cord. An amorphous crystalline mass near the umbilical cord possibly represents the recrystallized yolk sac. Another ptyctodont from the Gogo Formation, Austroptyctodus gardineri, also shows three small embryos inside it in the same position. Ptyctodontids have already provided the oldest definite evidence for vertebrate copulation, and the new specimens confirm that some placoderms had a remarkably advanced reproductive biology, comparable to that of some modern sharks and rays. The new discovery points to internal fertilization and viviparity in vertebrates as originating earliest within placoderms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, John A -- Trinajstic, Kate -- Young, Gavin C -- Senden, Tim -- England -- Nature. 2008 May 29;453(7195):650-2. doi: 10.1038/nature06966.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Museum Victoria, Melbourne, PO Box 666, Melbourne 3001, Australia. jlong@museum.vic.gov.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18509443" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Australia ; Biological Evolution ; Female ; Fishes/classification/*embryology/*physiology ; *Fossils ; History, Ancient ; Microscopy, Electron, Scanning ; Viviparity, Nonmammalian/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-11-14
    Description: Many complex behaviours, like speech or music, have a hierarchical organization with structure on many timescales, but it is not known how the brain controls the timing of behavioural sequences, or whether different circuits control different timescales of the behaviour. Here we address these issues by using temperature to manipulate the biophysical dynamics in different regions of the songbird forebrain involved in song production. We find that cooling the premotor nucleus HVC (formerly known as the high vocal centre) slows song speed across all timescales by up to 45 per cent but only slightly alters the acoustic structure, whereas cooling the downstream motor nucleus RA (robust nucleus of the arcopallium) has no observable effect on song timing. Our observations suggest that dynamics within HVC are involved in the control of song timing, perhaps through a chain-like organization. Local manipulation of brain temperature should be broadly applicable to the identification of neural circuitry that controls the timing of behavioural sequences and, more generally, to the study of the origin and role of oscillatory and other forms of brain dynamics in neural systems.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723166/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723166/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Michael A -- Fee, Michale S -- DC009280/DC/NIDCD NIH HHS/ -- K99 DC009280/DC/NIDCD NIH HHS/ -- K99 DC009280-02/DC/NIDCD NIH HHS/ -- MH067105/MH/NIMH NIH HHS/ -- R01 MH067105/MH/NIMH NIH HHS/ -- R01 MH067105-04/MH/NIMH NIH HHS/ -- England -- Nature. 2008 Nov 13;456(7219):189-94. doi: 10.1038/nature07448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19005546" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cold Temperature ; Efferent Pathways/physiology ; Finches/*physiology ; High Vocal Center/*physiology ; Neurons/physiology ; Prosencephalon/*physiology/radiography ; Time Factors ; Vocalization, Animal/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-07-15
    Description: Recent finds demonstrate that internal fertilization and viviparity (live birth) were more widespread in the Placodermi, an extinct group of armoured fishes, than was previously realized. Placoderms represent the sister group of the crown group jawed vertebrates (Gnathostomata), making their mode(s) of reproduction potentially informative about primitive gnathostome conditions. An ossified pelvic fin basipterygium discovered in the arthrodire Incisoscutum ritchiei was hypothesized to be identical in males and females, with males presumed to have an additional cartilaginous element or series forming a clasper. Here we report the discovery of a completely ossified pelvic clasper in Incisoscutum ritchiei (WAM 03.3.28) which shows that this interpretation was incorrect: the basipterygium described previously is in fact unique to females. The male clasper is a slender rod attached to a square basal plate that articulates directly with the pelvis. It carries a small cap of dermal bone covered in denticles and small hooks that may be homologous with the much larger dermal component of the ptyctodont clasper.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahlberg, Per -- Trinajstic, Kate -- Johanson, Zerina -- Long, John -- England -- Nature. 2009 Aug 13;460(7257):888-9. doi: 10.1038/nature08176. Epub 2009 Jul 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Subdepartment of Evolutionary Organismal Biology, Department of Physiology and Developmental Biology, Uppsala University, Norbyvagen 18A, 752 36 Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19597477" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Structures/anatomy & histology/*physiology ; Animals ; Female ; Fertilization/*physiology ; Fishes/*anatomy & histology/*physiology ; Fossils ; History, Ancient ; Male ; Pelvis/anatomy & histology ; Viviparity, Nonmammalian/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...