ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animalia; Balanophyllia europaea; Benthic animals; Benthos; Calcification/Dissolution; Cladocora caespitosa; Cnidaria; CO2 vent; Coast and continental shelf; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Field experiment; Growth/Morphology; Mediterranean Sea; Mediterranean Sea Acidification in a Changing Climate; MedSeA; Mollusca; Mytilus galloprovincialis; OA-ICC; Ocean Acidification International Coordination Centre; Patella caerulea; Single species; Temperate; Temperature  (1)
  • BIOACID; Biological Impacts of Ocean Acidification; Mediterranean Sea Acidification in a Changing Climate; MedSeA  (1)
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hahn, Sabine; Rodolfo-Metalpa, Riccardo; Griesshaber, Erika; Schmahl, Wolfgang W; Buhl, Dieter; Hall-Spencer, Jason M; Baggini, Cecilia; Fehr, Karl T; Immenhauser, Adrian (2012): Marine bivalve shell geochemistry and ultrastructure from modern low pH environments: environmental effect versus experimental bias. Biogeosciences, 9, 1897-1914, https://doi.org/10.5194/bg-9-1897-2012
    Publication Date: 2023-05-12
    Description: Bivalve shells can provide excellent archives of past environmental change but have not been used to interpret ocean acidification events. We investigated carbon, oxygen and trace element records from different shell layers in the mussels Mytilus galloprovincialis combined with detailed investigations of the shell ultrastructure. Mussels from the harbour of Ischia (Mediterranean, Italy) were transplanted and grown in water with mean pHT 7.3 and mean pHT 8.1 near CO2 vents on the east coast of the island. Most prominently, the shells recorded the shock of transplantation, both in their shell ultrastructure, textural and geochemical record. Shell calcite, precipitated subsequently under acidified seawater responded to the pH gradient by an in part disturbed ultrastructure. Geochemical data from all test sites show a strong metabolic effect that exceeds the influence of the low-pH environment. These field experiments showed that care is needed when interpreting potential ocean acidification signals because various parameters affect shell chemistry and ultrastructure. Besides metabolic processes, seawater pH, factors such as salinity, water temperature, food availability and population density all affect the biogenic carbonate shell archive.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; Mediterranean Sea Acidification in a Changing Climate; MedSeA
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rodolfo-Metalpa, Riccardo; Houlbrèque, Fanny; Tambutté, Eric; Boisson, Florence; Baggini, Cecilia; Patti, F P; Jeffree, Ross; Fine, M; Foggo, A; Gattuso, Jean-Pierre; Hall-Spencer, Jason M (2011): Coral and mollusc resistance to ocean acidification adversely affected by warming. Nature Climate Change, 1, 308-312, https://doi.org/10.1038/nclimate1200
    Publication Date: 2024-01-13
    Description: Increasing atmospheric carbon dioxide (CO2) concentrations are expectedto decrease surface ocean pH by 0.3-0.5 units by 2100, lowering the carbonate ion concentration of surfacewaters. This rapid acidification is predicted to dramatically decrease calcification in many marine organisms. Reduced skeletal growth under increased CO2 levels has already been shown for corals, molluscs and many other marine organisms. The impact of acidification on the ability of individual species to calcify has remained elusive, however, as measuring net calcification fails to disentangle the relative contributions of gross calcification and dissolution rates on growth. Here, we show that corals and molluscs transplanted along gradients of carbonate saturation state at Mediterranean CO2 vents are able to calcify and grow at even faster than normal rates when exposed to the high CO2 levels projected for the next 300 years. Calcifiers remain at risk, however, owing to the dissolution of exposed shells and skeletons that occurs as pH levels fall. Our results show that tissues and external organic layers play a major role in protecting shells and skeletons from corrosive sea water, limiting dissolution and allowing organisms to calcify. Our combined field and laboratory results demonstrate that the adverse effects of global warming are exacerbated when high temperatures coincide with acidification.
    Keywords: Animalia; Balanophyllia europaea; Benthic animals; Benthos; Calcification/Dissolution; Cladocora caespitosa; Cnidaria; CO2 vent; Coast and continental shelf; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Field experiment; Growth/Morphology; Mediterranean Sea; Mediterranean Sea Acidification in a Changing Climate; MedSeA; Mollusca; Mytilus galloprovincialis; OA-ICC; Ocean Acidification International Coordination Centre; Patella caerulea; Single species; Temperate; Temperature
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...