ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0819
    Keywords: Key words Acoustic noise ; Steam ; Crater lake ; Volcano ; Ruapehu
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Hydrophone measurements of acoustic noise levels in the Crater Lake of Mount Ruapehu, New Zealand were made on 18 January 1991 from an inflatable rubber boat on the lake. The greatest sound pressures were recorded in the 1–10 Hz band, with sound levels generally decreasing about 20 dB per decade from 10 Hz to 80 kHz. The low frequency noise did not have an obvious relationship to the tremor observed at a seismic station within 1 km of the lake. The comparatively low levels of middle and high frequency sound meant that at the time of measurement, direct steam input did not make a significant contribution to the heating of Crater Lake. This is consistent with the earlier conclusion that during the last decade a major part of the heat input of Crater Lake has come from lake water that was heated below the lake and recycled back into the lake.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Rapid Communications in Mass Spectrometry 9 (1995), S. 731-734 
    ISSN: 0951-4198
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Physics
    Notes: A new interface for coupling electrospray (ES) ionization and Fourier transform ion cyclotron resonance (FTICR) mass spectrometry has been developed based on an electrostatic ion guide (EIG). In these initial studies, the EIG interface has been demonstrated to be a simple but effective means of transmitting ES ions generated outside the magnetic field to the FTICR cell. In the current system, the pressures in the EIG region and front FTICR cell are 10-5 and 10-6 Torr, respectively. Under these conditions, ions may be accumulated with low trapping voltages (0.5-0.75 V) and without a high pressure pulse of buffer gas. ES-FTICR spectra of picomole to femtomole quantities of several peptides, proteins, nucleotides and dinucleotides have been obtained. Modifications currently in progress should enhance performance with respect both to limits of detection and to mass resolution.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Biological Mass Spectrometry 19 (1990), S. 27-31 
    ISSN: 1052-9306
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Methodology is presented for convenient, reproducible and direct measurement of blood concentrations of ethyl carbamate, an experimental animal carcinogen. Extraction techniques requiring 20 μl of blood and selected ion monitoring using ethyl (13C, 15N)carbamate as internal standard enabled quantification of ethyl carbamate concentrations ranging from 50 ng ml-1 to 100 m̈g ml-1. Coefficients of variation at several representative concentrations averaged less than 4%. The method was used to determine the time course of elimination of ethyl carbamate from mice receiving doses of 125 m̈mol kg-1.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Rapid Communications in Mass Spectrometry 7 (1993), S. 828-836 
    ISSN: 0951-4198
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Physics
    Notes: Conditions for the matrix-assisted laser desorption/ionization (MALDI) of oligodeoxyribonucleotides at 355 nm, developed using a 3-Tesla Fourier-transform ion cyclotron resonance mass spectrometer (FTMS), are reported. Efficient ion trapping and matrix selection are critical to the desorption and detection of oligonucleotides by FTMS. The achievable upper mass limit for the MALDI-FTMS of bio molecules on our 3-Tesla system has been extended from approximately 2 kDa to 6 kDa through the use of pulsed-trapping-plate ion deceleration techniques. By implementing the deceleration techniques, molecular ions for bovine insulin (MW = 5733.5), an oligodeoxythymidylic acid, pd[T]10 (MW = 3060.0), and a mixed-base 12-mer (MW = 3611.5) have been measured. For the analysis of oligonucleotides by FTMS, selection of an appropriate MALDI matrix is essential for the generation of [M—H]- ions. 3-Hydroxypicolinic acid provides a significant improvement over 2,5-dihydroxybenzoic acid for production of deprotonated molecules particularly for mixed-base oligomers. MALDI studies using FTMS have been duplicated using a newly constructed time-of-flight mass spectrometer (TOFMS) and oligonucleotide fragmentation on the TOFMS is reduced relative to that observed by FTMS. This may be a consequence of the longer times (milliseconds) required for FTMS detection.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-07-14
    Description: The ratio of males to females in a species is often considered to be relatively constant, at least over ecological time. Hamilton noted that the spread of "selfish" sex ratio-distorting elements could be rapid and produce a switch to highly biased population sex ratios. Selection against a highly skewed sex ratio should promote the spread of mutations that suppress the sex ratio distortion. We show that in the butterfly Hypolimnas bolina the suppression of sex biases occurs extremely fast, with a switch from a 100:1 population sex ratio to 1:1 occurring in fewer than 10 generations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Charlat, Sylvain -- Hornett, Emily A -- Fullard, James H -- Davies, Neil -- Roderick, George K -- Wedell, Nina -- Hurst, Gregory D D -- New York, N.Y. -- Science. 2007 Jul 13;317(5835):214.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University College London, 4 Stephenson Way, London NW1 2HE, UK. s.charlat@ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17626876" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Butterflies/genetics/*microbiology/*physiology ; Female ; Genes, Insect ; Male ; Molecular Sequence Data ; Reproduction ; Samoa ; Selection, Genetic ; *Sex Ratio ; Wolbachia/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-01-16
    Description: We report here genome sequences and comparative analyses of three closely related parasitoid wasps: Nasonia vitripennis, N. giraulti, and N. longicornis. Parasitoids are important regulators of arthropod populations, including major agricultural pests and disease vectors, and Nasonia is an emerging genetic model, particularly for evolutionary and developmental genetics. Key findings include the identification of a functional DNA methylation tool kit; hymenopteran-specific genes including diverse venoms; lateral gene transfers among Pox viruses, Wolbachia, and Nasonia; and the rapid evolution of genes involved in nuclear-mitochondrial interactions that are implicated in speciation. Newly developed genome resources advance Nasonia for genetic research, accelerate mapping and cloning of quantitative trait loci, and will ultimately provide tools and knowledge for further increasing the utility of parasitoids as pest insect-control agents.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849982/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849982/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Werren, John H -- Richards, Stephen -- Desjardins, Christopher A -- Niehuis, Oliver -- Gadau, Jurgen -- Colbourne, John K -- Nasonia Genome Working Group -- Beukeboom, Leo W -- Desplan, Claude -- Elsik, Christine G -- Grimmelikhuijzen, Cornelis J P -- Kitts, Paul -- Lynch, Jeremy A -- Murphy, Terence -- Oliveira, Deodoro C S G -- Smith, Christopher D -- van de Zande, Louis -- Worley, Kim C -- Zdobnov, Evgeny M -- Aerts, Maarten -- Albert, Stefan -- Anaya, Victor H -- Anzola, Juan M -- Barchuk, Angel R -- Behura, Susanta K -- Bera, Agata N -- Berenbaum, May R -- Bertossa, Rinaldo C -- Bitondi, Marcia M G -- Bordenstein, Seth R -- Bork, Peer -- Bornberg-Bauer, Erich -- Brunain, Marleen -- Cazzamali, Giuseppe -- Chaboub, Lesley -- Chacko, Joseph -- Chavez, Dean -- Childers, Christopher P -- Choi, Jeong-Hyeon -- Clark, Michael E -- Claudianos, Charles -- Clinton, Rochelle A -- Cree, Andrew G -- Cristino, Alexandre S -- Dang, Phat M -- Darby, Alistair C -- de Graaf, Dirk C -- Devreese, Bart -- Dinh, Huyen H -- Edwards, Rachel -- Elango, Navin -- Elhaik, Eran -- Ermolaeva, Olga -- Evans, Jay D -- Foret, Sylvain -- Fowler, Gerald R -- Gerlach, Daniel -- Gibson, Joshua D -- Gilbert, Donald G -- Graur, Dan -- Grunder, Stefan -- Hagen, Darren E -- Han, Yi -- Hauser, Frank -- Hultmark, Da -- Hunter, Henry C 4th -- Hurst, Gregory D D -- Jhangian, Shalini N -- Jiang, Huaiyang -- Johnson, Reed M -- Jones, Andrew K -- Junier, Thomas -- Kadowaki, Tatsuhiko -- Kamping, Albert -- Kapustin, Yuri -- Kechavarzi, Bobak -- Kim, Jaebum -- Kim, Jay -- Kiryutin, Boris -- Koevoets, Tosca -- Kovar, Christie L -- Kriventseva, Evgenia V -- Kucharski, Robert -- Lee, Heewook -- Lee, Sandra L -- Lees, Kristin -- Lewis, Lora R -- Loehlin, David W -- Logsdon, John M Jr -- Lopez, Jacqueline A -- Lozado, Ryan J -- Maglott, Donna -- Maleszka, Ryszard -- Mayampurath, Anoop -- Mazur, Danielle J -- McClure, Marcella A -- Moore, Andrew D -- Morgan, Margaret B -- Muller, Jean -- Munoz-Torres, Monica C -- Muzny, Donna M -- Nazareth, Lynne V -- Neupert, Susanne -- Nguyen, Ngoc B -- Nunes, Francis M F -- Oakeshott, John G -- Okwuonu, Geoffrey O -- Pannebakker, Bart A -- Pejaver, Vikas R -- Peng, Zuogang -- Pratt, Stephen C -- Predel, Reinhard -- Pu, Ling-Ling -- Ranson, Hilary -- Raychoudhury, Rhitoban -- Rechtsteiner, Andreas -- Reese, Justin T -- Reid, Jeffrey G -- Riddle, Megan -- Robertson, Hugh M -- Romero-Severson, Jeanne -- Rosenberg, Miriam -- Sackton, Timothy B -- Sattelle, David B -- Schluns, Helge -- Schmitt, Thomas -- Schneider, Martina -- Schuler, Andreas -- Schurko, Andrew M -- Shuker, David M -- Simoes, Zila L P -- Sinha, Saurabh -- Smith, Zachary -- Solovyev, Victor -- Souvorov, Alexandre -- Springauf, Andreas -- Stafflinger, Elisabeth -- Stage, Deborah E -- Stanke, Mario -- Tanaka, Yoshiaki -- Telschow, Arndt -- Trent, Carol -- Vattathil, Selina -- Verhulst, Eveline C -- Viljakainen, Lumi -- Wanner, Kevin W -- Waterhouse, Robert M -- Whitfield, James B -- Wilkes, Timothy E -- Williamson, Michael -- Willis, Judith H -- Wolschin, Florian -- Wyder, Stefan -- Yamada, Takuji -- Yi, Soojin V -- Zecher, Courtney N -- Zhang, Lan -- Gibbs, Richard A -- 5R01GM070026-04/GM/NIGMS NIH HHS/ -- 5R01HG000747-14/HG/NHGRI NIH HHS/ -- 5R24GM084917-02/GM/NIGMS NIH HHS/ -- AI028309-13A2/AI/NIAID NIH HHS/ -- R01 AI055624/AI/NIAID NIH HHS/ -- R01 GM064864/GM/NIGMS NIH HHS/ -- R01 GM064864-04/GM/NIGMS NIH HHS/ -- R01 GM064864-05A2/GM/NIGMS NIH HHS/ -- R01 GM070026/GM/NIGMS NIH HHS/ -- R01 GM070026-04S1/GM/NIGMS NIH HHS/ -- R01 GM079484/GM/NIGMS NIH HHS/ -- R01 GM085163/GM/NIGMS NIH HHS/ -- R01 GM085163-01/GM/NIGMS NIH HHS/ -- R01 GM085233/GM/NIGMS NIH HHS/ -- R01 HG000747/HG/NHGRI NIH HHS/ -- R01 HG000747-14/HG/NHGRI NIH HHS/ -- R01GM064864/GM/NIGMS NIH HHS/ -- R24 GM084917/GM/NIGMS NIH HHS/ -- R24 GM084917-01/GM/NIGMS NIH HHS/ -- R24 GM084917-02/GM/NIGMS NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- U54 HG003273-03/HG/NHGRI NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Jan 15;327(5963):343-8. doi: 10.1126/science.1178028.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20075255" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthropods/parasitology ; *Biological Evolution ; DNA Methylation ; DNA Transposable Elements ; Female ; Gene Transfer, Horizontal ; Genes, Insect ; Genetic Speciation ; Genetic Variation ; *Genome, Insect ; Host-Parasite Interactions ; Insect Proteins/genetics/metabolism ; Insect Viruses/genetics ; Insects/genetics ; Male ; Molecular Sequence Data ; Quantitative Trait Loci ; Recombination, Genetic ; Sequence Analysis, DNA ; Wasp Venoms/chemistry/toxicity ; Wasps/*genetics/physiology ; Wolbachia/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-06
    Description: The ABC toxin complexes produced by certain bacteria are of interest owing to their potent insecticidal activity and potential role in human disease. These complexes comprise at least three proteins (A, B and C), which must assemble to be fully toxic. The carboxy-terminal region of the C protein is the main cytotoxic component, and is poorly conserved between different toxin complexes. A general model of action has been proposed, in which the toxin complex binds to the cell surface via the A protein, is endocytosed, and subsequently forms a pH-triggered channel, allowing the translocation of C into the cytoplasm, where it can cause cytoskeletal disruption in both insect and mammalian cells. Toxin complexes have been visualized using single-particle electron microscopy, but no high-resolution structures of the components are available, and the role of the B protein in the mechanism of toxicity remains unknown. Here we report the three-dimensional structure of the complex formed between the B and C proteins, determined to 2.5 A by X-ray crystallography. These proteins assemble to form an unprecedented, large hollow structure that encapsulates and sequesters the cytotoxic, C-terminal region of the C protein like the shell of an egg. The shell is decorated on one end by a beta-propeller domain, which mediates attachment of the B-C heterodimer to the A protein in the native complex. The structure reveals how C auto-proteolyses when folded in complex with B. The C protein is the first example, to our knowledge, of a structure that contains rearrangement hotspot (RHS) repeats, and illustrates a marked structural architecture that is probably conserved across both this widely distributed bacterial protein family and the related eukaryotic tyrosine-aspartate (YD)-repeat-containing protein family, which includes the teneurins. The structure provides the first clues about the function of these protein repeat families, and suggests a generic mechanism for protein encapsulation and delivery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Busby, Jason N -- Panjikar, Santosh -- Landsberg, Michael J -- Hurst, Mark R H -- Lott, J Shaun -- England -- Nature. 2013 Sep 26;501(7468):547-50. doi: 10.1038/nature12465. Epub 2013 Aug 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉AgResearch Structural Biology Laboratory, School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23913273" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Bacterial Toxins/*chemistry/metabolism ; Consensus Sequence ; Conserved Sequence ; Crystallography, X-Ray ; Insecticides/chemistry ; Models, Molecular ; Molecular Sequence Data ; Protein Subunits/chemistry/metabolism ; Proteolysis ; *Repetitive Sequences, Amino Acid ; Yersinia/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-07-02
    Description: Lenalidomide is a highly effective treatment for myelodysplastic syndrome (MDS) with deletion of chromosome 5q (del(5q)). Here, we demonstrate that lenalidomide induces the ubiquitination of casein kinase 1A1 (CK1alpha) by the E3 ubiquitin ligase CUL4-RBX1-DDB1-CRBN (known as CRL4(CRBN)), resulting in CK1alpha degradation. CK1alpha is encoded by a gene within the common deleted region for del(5q) MDS and haploinsufficient expression sensitizes cells to lenalidomide therapy, providing a mechanistic basis for the therapeutic window of lenalidomide in del(5q) MDS. We found that mouse cells are resistant to lenalidomide but that changing a single amino acid in mouse Crbn to the corresponding human residue enables lenalidomide-dependent degradation of CK1alpha. We further demonstrate that minor side chain modifications in thalidomide and a novel analogue, CC-122, can modulate the spectrum of substrates targeted by CRL4(CRBN). These findings have implications for the clinical activity of lenalidomide and related compounds, and demonstrate the therapeutic potential of novel modulators of E3 ubiquitin ligases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kronke, Jan -- Fink, Emma C -- Hollenbach, Paul W -- MacBeth, Kyle J -- Hurst, Slater N -- Udeshi, Namrata D -- Chamberlain, Philip P -- Mani, D R -- Man, Hon Wah -- Gandhi, Anita K -- Svinkina, Tanya -- Schneider, Rebekka K -- McConkey, Marie -- Jaras, Marcus -- Griffiths, Elizabeth -- Wetzler, Meir -- Bullinger, Lars -- Cathers, Brian E -- Carr, Steven A -- Chopra, Rajesh -- Ebert, Benjamin L -- P01 CA066996/CA/NCI NIH HHS/ -- P01CA108631/CA/NCI NIH HHS/ -- R01 HL082945/HL/NHLBI NIH HHS/ -- R01HL082945/HL/NHLBI NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- T32GM007753/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jul 9;523(7559):183-8. doi: 10.1038/nature14610. Epub 2015 Jul 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Brigham and Women's Hospital, Division of Hematology, Boston, Massachusetts 02115, USA [2] University Hospital of Ulm, Department of Internal Medicine III, 89081 Ulm, Germany [3] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; 1] Brigham and Women's Hospital, Division of Hematology, Boston, Massachusetts 02115, USA [2] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; Celgene Corporation, San Diego, California 92121, USA. ; Brigham and Women's Hospital, Division of Hematology, Boston, Massachusetts 02115, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; Roswell Park Cancer Institute, Buffalo, New York 14263, USA. ; University Hospital of Ulm, Department of Internal Medicine III, 89081 Ulm, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26131937" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Casein Kinase I/genetics/*metabolism ; Cell Line ; Gene Expression Regulation/drug effects ; HEK293 Cells ; Humans ; Immunologic Factors/pharmacology ; Jurkat Cells ; K562 Cells ; Mice ; Molecular Sequence Data ; Myelodysplastic Syndromes/*genetics/*physiopathology ; Peptide Hydrolases/chemistry ; Proteolysis/drug effects ; Sequence Alignment ; Sequence Deletion ; Species Specificity ; Thalidomide/*analogs & derivatives/pharmacology ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitination/*drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...