ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Analytical Chemistry and Spectroscopy  (503)
  • Organic Chemistry  (401)
  • Mice  (213)
  • Condensed Matter: Electronic Properties, etc.  (166)
  • Theorie
  • 1
    ISSN: 0887-6134
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Capillary Gas Chromatography (CGC) is capable of determining underivatized cyclophosphamide (CPA) using SCOT OV 275 columns. Then CPA is subjected to in situ degradation resulting in formation of a cyclization product which can be determined selectively in biological fluids. In routine bioanalysis however cyclization products of CPA metabolites might interfere, e.g. 4-keto CPA. In the present study possible formation of cyclization products of 4-keto CPA similar to CPA was monitored by Mass Spectrometry. Cyclization of 4-keto CPA in situ was demonstrated to occur, resulting in a product similar to that of CPA. Both cyclization products could be determined selectively and it appeared that in situ cyclization of 4-keto CPA was negligible (〈5%), probably owing to extra stabilization of the CPA metabolite by keto-enol tautomerism as has been demonstrated by NMR.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Journal of High Resolution Chromatography 8 (1985), S. 664-672 
    ISSN: 0935-6304
    Keywords: Gas chromatography, GC ; Fused silica capillary columns ; CP-MAS NMR ; Deactivation methods ; Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The effect of deactivating a fused silica surface by silylation with 1,1,3,3-tetraphenyl-1,3-dimethylilazane (TPDMDS), triphenylsilylamine (TPSA), and octamethylcyclotetrasiloxane (D4) and by polydimethylsiloxane degradation (PSD) is studied. Rehydrated, dried, and deactivated Cab-O-Sil M5 samples are used as model materials for 29Si CP-MAS NMR analysis.At about 350 °C, TPDMDS yelds mainly diphenylmethylsiloxysilane, dimethyldisiloxysilane, and triphenylsiloxysilane groups. TPSA yields phenyltrisiloxysilane, diphenyldisiloxysilane, and triphenylsiloxysilane groups. At 400°C, the products formed initially are eventually replaced by methyltrisiloxysilane or phenyltrisiloxysilane groups, while a substantial number of silanol groups still remains. The possible consequences for wettability are discussed.D4 reacts with Cab-O-Sil even at 200°C, but a large number of silanol groups remains. This number decreases gradually at higher temperatures and becomes negligible above 400°C. The formation of methyltrisiloxysilane groups, which starts at 425°C, is predominant at 490°C.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Journal of High Resolution Chromatography 7 (1984), S. 607-614 
    ISSN: 0935-6304
    Keywords: Gas chromatography, GC ; Fused silica capillary columns ; CP-MAS NMR ; Silylation ; Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The effect of temperature, water content, and the type of reagent on the silylation of fused silica capillaries was studied by 29Si and 13C CP-MAS NMR. Fumed silica (Cab-O-Sil M5), which is essentially a highly dispersed vitreous quartz with a surface comparable to that of fused silica capillary columns, was selected as a model material.Hexamethyldisilazane (HMDS) and 1,2-diphenyl-1,1,3,3-tetraphenyldisilazane (DPTMDS), which were used as silylation reagents, yielded trimethyl- and dimethylphenylsilyl surface groups respectively at lower temperatures (〈 350°C and 〈250°C respectively). At higher temperatures, increasingly more dimethylsilyl groups are formed, with the silicon bound to two oxygen atoms. This process occurs for DPTMDS at a considerably lower temperature than for HMDS. The formation of silyl groups on the surface and the disappearance of hydroxyl groups are followed independently. The 13C NMR and GC-MS of the reaction products showed that with DPTMDS, the formation of two Si-O-Si links is accompanied by a loss of phenyl groups rather than of methyl groups.After the Cab-O-Sil had been dried over P2O5, the formation of these double links occurred for HMDS only at temperatures above 460°C and for DPTMDS at 400°C. Thus we concluded that water supplies oxygen atoms for double Si-O-Si links (possibly crosslinks) necessary for efficient deactivation. This may explain the less successful silanization of fused silica capillaries because their water content is lower than that of glass capillaries.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0749-1581
    Keywords: 2D NMR ; Oplopanonyl acetate ; Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Oplopanonyl acetate was isolated from Chamaecyparis pisifera. Its structure and stereochemical features were established using NMR techniques.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-12-12
    Description: Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related parameters in up to 135,367 individuals. Here we identify 75 independent genetic loci associated with one or more red blood cell phenotypes at P 〈 10(-8), which together explain 4-9% of the phenotypic variance per trait. Using expression quantitative trait loci and bioinformatic strategies, we identify 121 candidate genes enriched in functions relevant to red blood cell biology. The candidate genes are expressed preferentially in red blood cell precursors, and 43 have haematopoietic phenotypes in Mus musculus or Drosophila melanogaster. Through open-chromatin and coding-variant analyses we identify potential causal genetic variants at 41 loci. Our findings provide extensive new insights into genetic mechanisms and biological pathways controlling red blood cell formation and function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3623669/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3623669/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van der Harst, Pim -- Zhang, Weihua -- Mateo Leach, Irene -- Rendon, Augusto -- Verweij, Niek -- Sehmi, Joban -- Paul, Dirk S -- Elling, Ulrich -- Allayee, Hooman -- Li, Xinzhong -- Radhakrishnan, Aparna -- Tan, Sian-Tsung -- Voss, Katrin -- Weichenberger, Christian X -- Albers, Cornelis A -- Al-Hussani, Abtehale -- Asselbergs, Folkert W -- Ciullo, Marina -- Danjou, Fabrice -- Dina, Christian -- Esko, Tonu -- Evans, David M -- Franke, Lude -- Gogele, Martin -- Hartiala, Jaana -- Hersch, Micha -- Holm, Hilma -- Hottenga, Jouke-Jan -- Kanoni, Stavroula -- Kleber, Marcus E -- Lagou, Vasiliki -- Langenberg, Claudia -- Lopez, Lorna M -- Lyytikainen, Leo-Pekka -- Melander, Olle -- Murgia, Federico -- Nolte, Ilja M -- O'Reilly, Paul F -- Padmanabhan, Sandosh -- Parsa, Afshin -- Pirastu, Nicola -- Porcu, Eleonora -- Portas, Laura -- Prokopenko, Inga -- Ried, Janina S -- Shin, So-Youn -- Tang, Clara S -- Teumer, Alexander -- Traglia, Michela -- Ulivi, Sheila -- Westra, Harm-Jan -- Yang, Jian -- Zhao, Jing Hua -- Anni, Franco -- Abdellaoui, Abdel -- Attwood, Antony -- Balkau, Beverley -- Bandinelli, Stefania -- Bastardot, Francois -- Benyamin, Beben -- Boehm, Bernhard O -- Cookson, William O -- Das, Debashish -- de Bakker, Paul I W -- de Boer, Rudolf A -- de Geus, Eco J C -- de Moor, Marleen H -- Dimitriou, Maria -- Domingues, Francisco S -- Doring, Angela -- Engstrom, Gunnar -- Eyjolfsson, Gudmundur Ingi -- Ferrucci, Luigi -- Fischer, Krista -- Galanello, Renzo -- Garner, Stephen F -- Genser, Bernd -- Gibson, Quince D -- Girotto, Giorgia -- Gudbjartsson, Daniel Fannar -- Harris, Sarah E -- Hartikainen, Anna-Liisa -- Hastie, Claire E -- Hedblad, Bo -- Illig, Thomas -- Jolley, Jennifer -- Kahonen, Mika -- Kema, Ido P -- Kemp, John P -- Liang, Liming -- Lloyd-Jones, Heather -- Loos, Ruth J F -- Meacham, Stuart -- Medland, Sarah E -- Meisinger, Christa -- Memari, Yasin -- Mihailov, Evelin -- Miller, Kathy -- Moffatt, Miriam F -- Nauck, Matthias -- Novatchkova, Maria -- Nutile, Teresa -- Olafsson, Isleifur -- Onundarson, Pall T -- Parracciani, Debora -- Penninx, Brenda W -- Perseu, Lucia -- Piga, Antonio -- Pistis, Giorgio -- Pouta, Anneli -- Puc, Ursula -- Raitakari, Olli -- Ring, Susan M -- Robino, Antonietta -- Ruggiero, Daniela -- Ruokonen, Aimo -- Saint-Pierre, Aude -- Sala, Cinzia -- Salumets, Andres -- Sambrook, Jennifer -- Schepers, Hein -- Schmidt, Carsten Oliver -- Sillje, Herman H W -- Sladek, Rob -- Smit, Johannes H -- Starr, John M -- Stephens, Jonathan -- Sulem, Patrick -- Tanaka, Toshiko -- Thorsteinsdottir, Unnur -- Tragante, Vinicius -- van Gilst, Wiek H -- van Pelt, L Joost -- van Veldhuisen, Dirk J -- Volker, Uwe -- Whitfield, John B -- Willemsen, Gonneke -- Winkelmann, Bernhard R -- Wirnsberger, Gerald -- Algra, Ale -- Cucca, Francesco -- d'Adamo, Adamo Pio -- Danesh, John -- Deary, Ian J -- Dominiczak, Anna F -- Elliott, Paul -- Fortina, Paolo -- Froguel, Philippe -- Gasparini, Paolo -- Greinacher, Andreas -- Hazen, Stanley L -- Jarvelin, Marjo-Riitta -- Khaw, Kay Tee -- Lehtimaki, Terho -- Maerz, Winfried -- Martin, Nicholas G -- Metspalu, Andres -- Mitchell, Braxton D -- Montgomery, Grant W -- Moore, Carmel -- Navis, Gerjan -- Pirastu, Mario -- Pramstaller, Peter P -- Ramirez-Solis, Ramiro -- Schadt, Eric -- Scott, James -- Shuldiner, Alan R -- Smith, George Davey -- Smith, J Gustav -- Snieder, Harold -- Sorice, Rossella -- Spector, Tim D -- Stefansson, Kari -- Stumvoll, Michael -- Tang, W H Wilson -- Toniolo, Daniela -- Tonjes, Anke -- Visscher, Peter M -- Vollenweider, Peter -- Wareham, Nicholas J -- Wolffenbuttel, Bruce H R -- Boomsma, Dorret I -- Beckmann, Jacques S -- Dedoussis, George V -- Deloukas, Panos -- Ferreira, Manuel A -- Sanna, Serena -- Uda, Manuela -- Hicks, Andrew A -- Penninger, Josef Martin -- Gieger, Christian -- Kooner, Jaspal S -- Ouwehand, Willem H -- Soranzo, Nicole -- Chambers, John C -- 092731/Wellcome Trust/United Kingdom -- 097117/Wellcome Trust/United Kingdom -- 14136/Cancer Research UK/United Kingdom -- CZB/4/505/Chief Scientist Office/United Kingdom -- ETM/55/Chief Scientist Office/United Kingdom -- G0600705/Medical Research Council/United Kingdom -- G0700704/Medical Research Council/United Kingdom -- G0801056/Medical Research Council/United Kingdom -- G1000143/Medical Research Council/United Kingdom -- G1002084/Medical Research Council/United Kingdom -- G9815508/Medical Research Council/United Kingdom -- HHSN268201100005C/HL/NHLBI NIH HHS/ -- HHSN268201100006C/HL/NHLBI NIH HHS/ -- HHSN268201100007C/HL/NHLBI NIH HHS/ -- HHSN268201100008C/HL/NHLBI NIH HHS/ -- HHSN268201100009C/HL/NHLBI NIH HHS/ -- HHSN268201100010C/HL/NHLBI NIH HHS/ -- HHSN268201100011C/HL/NHLBI NIH HHS/ -- HHSN268201100012C/HL/NHLBI NIH HHS/ -- HHSN271201100005C/DA/NIDA NIH HHS/ -- K12 RR023250/RR/NCRR NIH HHS/ -- MC_U106179471/Medical Research Council/United Kingdom -- MC_U106188470/Medical Research Council/United Kingdom -- N01AG12109/AG/NIA NIH HHS/ -- P01 HL076491/HL/NHLBI NIH HHS/ -- P01 HL098055/HL/NHLBI NIH HHS/ -- P20 HL113452/HL/NHLBI NIH HHS/ -- P30 DK072488/DK/NIDDK NIH HHS/ -- R01 AG018728/AG/NIA NIH HHS/ -- R01 CA165001/CA/NCI NIH HHS/ -- R01 GM053275/GM/NIGMS NIH HHS/ -- R01 HD042157/HD/NICHD NIH HHS/ -- R01 HL059367/HL/NHLBI NIH HHS/ -- R01 HL086694/HL/NHLBI NIH HHS/ -- R01 HL087641/HL/NHLBI NIH HHS/ -- R01 HL087679/HL/NHLBI NIH HHS/ -- R01 HL088119/HL/NHLBI NIH HHS/ -- R01 HL103866/HL/NHLBI NIH HHS/ -- R01 HL103931/HL/NHLBI NIH HHS/ -- R01 LM010098/LM/NLM NIH HHS/ -- R01 MH081802/MH/NIMH NIH HHS/ -- RG/09/012/28096/British Heart Foundation/United Kingdom -- RL1 MH083268/MH/NIMH NIH HHS/ -- U01 GM074518/GM/NIGMS NIH HHS/ -- U01 HG004402/HG/NHGRI NIH HHS/ -- U01 HL072515/HL/NHLBI NIH HHS/ -- U01 HL084756/HL/NHLBI NIH HHS/ -- U24 MH068457/MH/NIMH NIH HHS/ -- U54 RR020278/RR/NCRR NIH HHS/ -- UL1 RR025005/RR/NCRR NIH HHS/ -- UL1 TR000439/TR/NCATS NIH HHS/ -- England -- Nature. 2012 Dec 20;492(7429):369-75. doi: 10.1038/nature11677. Epub 2012 Dec 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands. p.van.der.harst@umcg.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23222517" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle/genetics ; Cytokines/metabolism ; Drosophila melanogaster/genetics ; Erythrocytes/cytology/*metabolism ; Female ; Gene Expression Regulation/genetics ; *Genetic Loci ; *Genome-Wide Association Study ; Hematopoiesis/genetics ; Hemoglobins/genetics ; Humans ; Male ; Mice ; Organ Specificity ; *Phenotype ; Polymorphism, Single Nucleotide/genetics ; RNA Interference ; Signal Transduction/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The 5,6:5′,6′-diepoxy-5,6:5′,6;-tetrahydro-β,β-carotene, isolated from tubers of a white-fleshed variety of sweet potato (Ipomoea batatas LAM.) has been assigned the (5R,6S,5′R,6′S)-chirality on the basis of its HPLC, UV/VIS, and CD data.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A large series of orthopramides (= 2-methoxybenzamides), 6-methoxysalicylamides, and 2,6-dimethoxy-benzamides were examined for their affinity to the dopamine D2 receptor. The binding data were correlated with physicochemical parameters and 13C-NMR chemical shifts using the cross-validated partial least-squares method and multiple linear regression analysis. The results quantitate the influence of electronic factors and lipophilicity to D2 receptor binding. They also show that the N-[(1-ethylpyrroIidin-2-yl)methyl] and N-(1-benzylpiperidin-4-yl) side-chains affect the mode of binding of these compounds.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A new protected 2-deoxy-D-ribose derivative, 5-O-[(tert-butyl)diphenylsilyl]-2-deoxy-3,4-O- isopropylidene-aldehydo-D-ribose (5), was synthesized starting from 2-deoxy-D-ribose. This compound was coupled with 2-lithio-4-(4,5-dihydro-4,4-dimethyloxazol-2-yl)pyridine giving a D/L-glycero-mixture 7 of 5-O-[(tert-butyl)diphenylsilyl]-2-deoxy-1-C-[4-(4,5 -dihydro-4,4-dimethyloxazol-2-yl)pyridin-2-yl]-3,4-O-isopropylidene- D-erythro-pentitol. The mixture 7 was 1-O-mesylated with methanesulfonyl chloride and subsequently treated with CF3COOH/H2O and ammonia to afford the α/β-D-anomers 10 of 2-(2-deoxy-D-ribofuranosyl)pyridine-4-carboxamide. Both anomers were purified and separated by HPLC and identified by NMR and DCI-MS. Anomer β-D-10 was evaluated against a series of tumor-cell lines and a variety of viral strains. No antitumor or antiviral activity was observed.
    Additional Material: 4 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Luteochrome isolated from the tubers of a white-fleshed variety of sweet potato (Ipomoea batatas LAM.) has been shown by HPLC, 1H-NMR and CD spectra to consist of a mixture of (5R,6S,5′R,8′R)- and (5R,6S,5′R,8′S)- 5,6:5′,8′-diepoxy-5,6,5′,8′-tetrahydro-β,β-carotene (1 and 2, resp.). Therefore, its precursor is (5R,6S,5′R,6′S)-5,6:5′,6′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene (4). This is the first identification of luteochrome as a naturally occurring carotenoid and, at the same time, gives the first clue to the as yet unknown chirality of the widespread β,β-carotene diepoxide. These facts demonstrate that the enzymic epoxidation of the β-end group occurs from the α-side, irrespective of the presence of OH groups on the ring.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: 2′-Deoxy-5-(isothiazol-5-yl)uridine (12) was synthesized starting from 2′-deoxy-5-iodouridine using a Pd-catalysed cross-coupling reaction with propiolaldehyde diethyl acetal followed by deprotection and ring closure using thiosulfate. 2′-Deoxyuridine 12 has a particular place among the 5-heteroaryl-substituted 2′-deoxyuridines in that it has a high affinity for herpes simplex virus type 1 (HSV-1)-encoded thymidine kinase (TK) without antiviral activity. Biochemical studies revealed that 12 is a substrate for viral TK. We further investigated the interaction of 12 with the HSV-1 thymidine kinase. The conformation of 12 in solution was established by NMR spectroscopy. The most stable conformer 12A has the S-atom of the isothiazole ring placed in the neighbourhood of the C(4)=O group of the pyrimidine moiety. The compound was docked in its most stable conformation in the active site of HSV-1 TK and subjected to energy minimization. This demonstrated that the isothiazole moiety binds in a cavity lined by the side chains of Tyr-132, Arg-163, Ala-167, and Ala-168 and that the C(3) atom of the isothiazole moiety is located in close proximity of the phenolic O-atom of Tyr-132 and the aliphatic part of the Arg-163 side chain.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...