ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amphibian epidermis  (2)
  • Enzyme synthesis  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 112 (1977), S. 127-132 
    ISSN: 1432-072X
    Keywords: Acinetobacter calcoaceticus ; Nitrate reductase ; Interconversion ; Cyanate ; Enzyme synthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A soluble nitrate reductase from the bacterium Acinetobacter calcoaceticus grown on nitrate has been characterized. The reduction of nitrate to nitrite is mediated by an enzyme of 96000 molecular weight that can use as electron donors either viologen dyes chemically reduced with dithionite or enzymatically reduced with NAD(P)H, through specific diaphorases which utilize viologens as electron acceptors. Nitrate reductase activity is molybdenum-dependent as shown by tungstate antagonistic experiments and is sensitive to -SH reagents and metal chelators such as KCN. The enzyme synthesis is repressed by ammonia. Moreover, nitrate reductase activity undergoes a quick inactivation either by dithionite and temperature or by dithionite in the presence of small amounts of nitrate. Cyanate prevents this inactivating process and can restore the activity once the inactivation had occurred, thus suggesting that an interconversion mechanism may participate in the regulation of Acinetobacter nitrate reductase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 172 (1993), S. 136-144 
    ISSN: 1615-6102
    Keywords: Amphibian epidermis ; Metamorphosis ; Osmoregulation ; Plasma membrane ; Glycoprotein ; Lectin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A cytochemical and biochemical study of galactose (Gal) and N-acetyl-glucosamine (GlcNAc) containing glycoproteins of the anuran amphibian epidermis during development has been carried out. In premetamorphic tadpoles, theGriffonia simplicifolia II lectin (GS II, specific for N-acetyl glucosamine) bound to a glycoprotein of 49 kDa in the plasma membrane of all the epidermal strata showing a basal-to-apical binding gradient. During metamorphic climax GS II labeling was progressively polarized to the outermost plasma membrane. In epidermis from juveniles and adults the staining was observed mainly in a 52 kDa band.Griffonia simplicifolia I lectin (GS I, specific for galactose) also bound to a glycoprotein of about 49 kDa in tadpoles and 52 kDa in frogs. Furthermore, a GS I labeling in bands of about 110–150 kDa appears during metamorphosis. After this process, a definitive pattern of lectin staining and K+-stimulated, ouabain-sensitive p-nitrophenyl phosphatase activity is established.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1615-6102
    Keywords: Amphibian epidermis ; Carbohydrate ; Glycoprotein ; Glycosylation ; Lectin ; Plasma membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Expression of various sugar residues on the plasma membrane of frog (Rana perezi) epidermal cells at different stages of differentiation has been monitored with the use of a battery of HRP-conjugated lectins. In paraffin-embedded tissue, mannose residues (stained by Concanavalin A) were detected at the keratinocyte cell surface in all epidermal strata. However,Lens culinaris agglutinin (LCA), also specific for mannose, specifically stained the plasma membrane of cells from the stratum germinativum. Expression of N-acetyl-glucosamine (GlcNAc), labelled with wheat germ agglutinin (WGA), was maximum at the cell surface of basal cells and progressively decreased through the stratum spinosum. Galactose (Gal) and N-acetyl-galactosamine (GalNAc) residues, labelled withGriffonia simplicifolia I (GS I) andGlycine max (SBA) agglutinins, respectively, were expressed according to the degree of differentiation in amphibian epidermal cells. Sialic acid-containing glycoproteins, labelled withLimax flavus agglutinin (LFA), were found in the outermost plasma membrane of the replacement cell layer and stratum corneum. Glycoproteins responsible for the observed lectin-binding patterns have been identified by staining on nitrocellulose filters after electrophoresis of solubilized plasma membrane fractions and Western blotting. Changes at the level of glycosylation of plasma membrane glycoproteins as epidermal cells differentiate are discussed on the basis of a progressive addition of Gal residues. Integral membrane proteins have been solubilized with the non-denaturing detergent CHAPS and glycoproteins containing terminal Gal residues, that are expressed according to the degree of differentiation in frog epidermis, have been partially purified by affinity chromatography on a GS I-Sepharose 4 B column. The purified fraction was composed by four acidic glycoproteins with isoelectric points between 4.6 and 5.2 and, in SDS-gels gave five major protein bands with approximate molecular weights of 148, 140, 102, 60, and 52 kDa in SDS-gels. The 102 and 52 kDa bands correspond to the a and β subunits of amphibian epidermal Na+,K+-ATPase as demonstrated by specific staining with a polyclonal antibody against the catalytic subunit of pig kidney proton pump and staining with lectins GS I, GS II, and WGA. Possible relationships between higher molecular weight proteins and the constituents of intramembranous particles from the outermost plasma membranes of the replacement cell layer and the stratum corneum are also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...