ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Geography. ; Geography.
    Description / Table of Contents: Introduction -- Surveying the Earth through the ages -- Geodesy in the 21st century - Global reference systems and modern geodetic space observation techniques -- Our planet in focus - Phenomena of global change -- Social relevance of high-precision measurement of our planet from space.
    Abstract: How does your cell phone know where you are right now? How is our planet changing due to geodynamic processes and ongoing climate change? How can these changes be precisely measured from space in order to obtain reliable information about the melting of ice sheets or the threat to coastal regions from rising sea levels? This popular science book provides answers to these and many other socially relevant questions. It is aimed at interested non-professionals who want to learn more about our fascinating planet, but also at experts in natural sciences. You are taken on an exciting journey through time from the first surveys in ancient times to the satellite era, which is providing us with a global view of our home planet. Illustrative examples demonstrate how deeply global positioning and navigation with satellites pervade our daily life, and what fundamental contributions geodesy makes to understanding the Earth system and determining the effects of climate change. With interview contributions by Günter Hein, Harald Lesch and Stefan Rahmstorf. This book is a translation of the original German 1st edition Mission Erde by Detlef Angermann et al., published by Springer-Verlag GmbH Germany, part of Springer Nature in 2021. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). Content and language were subsequently revised by the authors. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors. The Authors Detlef Angermann holds a doctorate in geodesy and heads the Research Area Reference Systems at the Deutsches Geodätisches Forschungsinstitut of the Technical University of Munich. Roland Pail is Professor of Astronomical and Physical Geodesy at the Technical University of Munich. Florian Seitz is Professor of Geodetic Geodynamics and heads the Deutsches Geodätisches Forschungsinstitut of the Technical University of Munich. Urs Hugentobler is Professor of Satellite Geodesy and heads the Satellite Geodesy Research Facility of the Technical University of Munich.
    Type of Medium: Online Resource
    Pages: XII, 246 p. 74 illus., 68 illus. in color. , online resource.
    Edition: 1st ed. 2022.
    ISBN: 9783662641064
    DDC: 910
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-06-22
    Description: Ambiguity resolution of a single receiver is becoming more and more popular for precise GNSS (Global Navigation Satellite System) applications. To serve such an approach, dedicated satellite orbit, clock and bias products are needed. However, we need to be sure whether products based on specific frequencies and signals can be used when processing measurements of other frequencies and signals. For instance, for Galileo E5a frequency, some receivers track only the pilot signal (C5Q) while some track only the pilot-data signal (C5X). We cannot compute the differences between C5Q and C5X directly since these two signals are not tracked concurrently by any common receiver. As code measurements contribute equally as phase in the Melbourne-Wuebbena (MelWub) linear combination it is important to investigate whether C5Q and C5X can be mixed in a network to compute a common satellite MelWub bias product. By forming two network clusters tracking Q and X signals, respectively, we confirm that GPS C5Q and C5X signals cannot be mixed together. Because the bias differences between GPS C5Q and C5X can be more than half of one wide-lane cycle. Whereas, mixing of C5Q and C5X signals for Galileo satellites is possible. The RMS of satellite MelWub bias differences between Q and X cluster is about 0.01 wide-lane cycles for both E1/E5a and E1/E5b frequencies. Furthermore, we develop procedures to compute satellite integer clock and narrow-lane bias products using individual dual-frequency types. Same as the finding from previous studies, GPS satellite clock differences between L1/L2 and L1/L5 estimates exist and show a periodical behavior, with a peak-to-peak amplitude of 0.7 ns after removing the daily mean difference of each satellite. For Galileo satellites, the maximum clock difference between E1/E5a and E1/E5b estimates after removing the mean value is 0.04 ns and the mean RMS of differences is 0.015 ns. This is at the same level as the noise of the carrier phase measurement in the ionosphere-free linear combination. Finally, we introduce all the estimated GPS and Galileo satellite products into PPP-AR (precise point positioning, ambiguity resolution) and Sentinel-3A satellite orbit determination. Ambiguity fixed solutions show clear improvement over float solutions. The repeatability of five ground-station coordinates show an improvement of more than 30% in the east direction when using both GPS and Galileo products. The Sentinel-3A satellite tracks only GPS L1/L2 measurements. The standard deviation (STD) of satellite laser ranging (SLR) residuals is reduced by about 10% when fixing ambiguity parameters to integer values.
    Description: Klinikum rechts der Isar der Technischen Universität München (8934)
    Keywords: ddc:526 ; Integer satellite clock ; Ambiguity resolution ; Daily code and phase biases ; GPS and Galileo signals ; Pilot and data
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...