ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 56 (1995), S. 42-48 
    ISSN: 1432-0827
    Keywords: Phenytoin ; Bone formation ; Osteocalcin ; Alkaline phosphatase ; Osteogenesis ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract Long-term use of phenytoin for the treatment of epilepsy has been associated with increased thickness of craniofacial bones. The aim of the present study was to evaluate the possibility that low doses of phenytoin are osteogenic in vivo by measuring the effects of phenytoin administration on serum and bone histomorphometric parameters of bone formation in two rat experiments. In the first experiment, four groups of adult male Sprague-Dawley rats received daily I.P. injections of 0, 5, 50, or 150 mg/kg/day of phenytoin, respectively, for 47 days. Serum alkaline phosphatase (ALP) and osteocalcin were increased by 5 and 50 mg/kg/day phenytoin. The increases in osteocalcin and ALP occurred by day 7 and day 21, respectively. The tibial diaphyseal mineral apposition rate (MAR) at sacrifice (day 48) was significantly increased in rats receiving 5 mg/kg/day phenytoin. At a dose of 150 mg/kg/day, the increase in serum ALP, osteocalcin and MAR was reversed. No significant differences in serum calcium, phosphorus, or 1,25(OH)2D3 levels were seen. In a second experiment, three groups of rats received daily I.P. injection of lower doses of phenytoin (i.e., 0, 1, or 5 mg/kg/day, respectively) for 42 days. Phenytoin also did not affect the growth rate or serum calcium, phosphorus, and 25(OH)D3 levels. Daily injection of 5 mg/kg/day phenytoin significantly increased several measures of bone formation, i.e., serum ALP and osteocalcin, bone ALP, periosteal MAR, and trabecular bone volume. However, rats receiving lower doses of phenytoin (i.e., 1 mg/kg/day) did not show significant increases in the serum bone formation parameters. In contrast, metaphyseal osteoblast surface, osteoblast number, osteoid thickness, surface, and volume were all significantly increased in rats treated in 1 mg/kg/day but not with 5 mg/kg/day phenytoin, suggesting that the tibial diaphysis and metaphysis bone formation parameters might have different dose-dependent responses to phenytoin treatment. Administration of the test doses of phenytoin did not significantly affect the histomorphometric bone resorption parameters. In conclusion, these findings represent the first in vivo evidence that phenytoin at low doses (i.e., between 1 and 5 mg/kg/day) is an osteogenic agent in the rat.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0827
    Keywords: Hydrochlorothiazide ; Cell Proliferation ; Platelet-derived growth factor ; Mitogen ; Osteoblasts (human)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract Long-term use of hydrochlorothizide (HCTZ), a common diuretic agent for hypertension, has been associated with increased bone density and reduced hip fracture rates in patients. In this study, we sought to examine whether HCTZ has an anabolic effect on the proliferation of human osteoblasts (derived from either vertebrate or rib bone samples) in vitro. Cell proliferation was determined by [3H]thymidine incorporation and cell number counting. In medium supplemented with 1% bovine calf serum, HCTZ significantly and reproducibly increased [3H]thymidine incorporation and cell number. The stimulatory effect was dose dependent in a biphasic manner, with the maximal stimulation (approximately 60% above control, P〈0.001) seen at 1 μM HCTZ. In fresh serum-free medium, HCTZ was ineffective as a bone cell mitogen, indicating that the bone cell mitogenic activity of HCTZ required a serum growth factor (GF). HCTZ at doses greater than 10 μM was inhibitory in the presence or the absence of serum, presumably because of the cytotoxic effects. The serum requirement for the bone cell mitogenic activity of HCTZ could be replaced with a conditioned medium (conditioned with normal human osteoblasts for 24 hours), or with a mitogenic dose (1 ng/ml) of PDGF. The GF requirement was specific for PDGF, because other bone cell-derived growth factors (i.e., TGFβ, IGF-I, IGF-II, and bFGF) were unable to replace serum for the bone cell mitogenic activity of HCTZ. In summary, this study shows that (1) HCTZ stimulated the proliferation of normal, untrasformed, human osteoblasts in vitro; (2) the bone cell mitogenic effect of HCTZ required the presence of a serum GF; (3) the serum requirement could be replaced with a bone cell GF in conditioned medium; (4) the GF requirement was specific for PDGF. In conclusion, we have demonstrated for the first time that HCTZ has a direct anabolic effect on human osteoblasts in vitro, and that the mitogenic activity is dependent on the presence of PDGF. Because increased bone cell proliferation is a key determinant of bone formation, these observations raise the interesting possibility that HCTZ could act directly on bone cells to stimulate bone formation in patients.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...